1.对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( )
A.-1是f(x)的零点 B.1是f(x)的极值点 C.3是f(x)的极值
D.点(2,8)在曲线y=f(x)上 答案 A
解析 由A知a-b+c=0;由B知f′(x)=2ax+b,2a+b=0;由C知f′(x)
b4ac-b2?b?
=2ax+b,令f′(x)=0可得x=-,则f?-?=3,则=3;由D知
2a4a?2a?
??2a+b=0
4a+2b+c=8.假设A选项错误,则?4ac-b=34a??4a+2b+c=8
2
a-b+c≠0
?a=5
,得?b=-10
?c=8
,
满足题意,故A结论错误.同理易知当B或C或D选项错误时不符合题意,故选A.
2.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有 ( )
A.2人 C.4人 答案 B
解析 用A,B,C分别表示优秀、及格和不及格.显然,语文成绩得A的学生最多只有一人,语文成绩得B的也最多只有1人,得C的也最多只有1人,所
B.3人 D.5人
以这组学生的成绩为(AC),(BB),(CA)满足条件,故学生最多为3人.
3.观察下列各式:
0
C01=4; 11C03+C3=4; 122C05+C5+C5=4; 1233C07+C7+C7+C7=4;
……
照此规律,当n∈N*时,
12n-1C02n-1+C2n-1+C2n-1+…+C2n-1=________.
点击观看解答视频
答案 4n-1
解析 第一个等式,n=1,而右边式子为40=41-1; 第二个等式,n=2,而右边式子为41=42-1; 第三个等式,n=3,而右边式子为42=43-1; 第四个等式,n=4,而右边式子为43=44-1; ……
归纳可知,第n个等式的右边为4n-1.
4.一个二元码是由0和1组成的数字串x1x2…xn(n∈N*),其中xk(k=1,2,…,
n)称为第k位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).
已知某种二元码x1x2…x7的码元满足如下校验方程组:
?x⊕x⊕x⊕x=0,?x⊕x⊕x⊕x=0,?x⊕x⊕x⊕x=0,
421
533
665
777
其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.
现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了
相关推荐: