第一范文网 - 专业文章范例文档资料分享平台

中考数学压轴题专题平行四边形的经典综合题及答案

来源:用户分享 时间:2025/5/23 8:59:22 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

中考数学压轴题专题平行四边形的经典综合题及答案

一、平行四边形

1.如图1,正方形ABCD的一边AB在直尺一边所在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E.

(1)如图1,线段AB与OE之间的数量关系为 .(请直接填结论)

(2)保证点A始终在直线MN上,正方形ABCD绕点A旋转θ(0<θ<90°),过点 B作BF⊥MN于点F.

①如图2,当点O、B两点均在直线MN右侧时,试猜想线段AF、BF与OE之间存在怎样的数量关系?请说明理由.

②如图3,当点O、B两点分别在直线MN两侧时,此时①中结论是否依然成立呢?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.

③当正方形ABCD绕点A旋转到如图4的位置时,线段AF、BF与OE之间的数量关系为 .(请直接填结论)

【答案】(1)AB=2OE;(2)①AF+BF=2OE,证明见解析;②AF﹣BF=2OE 证明见解析;③BF﹣AF=2OE, 【解析】

试题分析:(1)利用直角三角形斜边的中线等于斜边的一半即可得出结论; (2)①过点B作BH⊥OE于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证; ②过点B作BH⊥OE交OE的延长线于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证; ③同②的方法可证.

试题解析:(1)∵AC,BD是正方形的对角线, ∴OA=OC=OB,∠BAD=∠ABC=90°, ∵OE⊥AB,

1AB, 2∴AB=2OE,

∴OE=

(2)①AF+BF=2OE

证明:如图2,过点B作BH⊥OE于点H

∴∠BHE=∠BHO=90° ∵OE⊥MN,BF⊥MN ∴∠BFE=∠OEF=90° ∴四边形EFBH为矩形 ∴BF=EH,EF=BH ∵四边形ABCD为正方形 ∴OA=OB,∠AOB=90°

∴∠AOE+∠HOB=∠OBH+∠HOB=90° ∴∠AOE=∠OBH ∴△AEO≌△OHB(AAS) ∴AE=OH,OE=BH

∴AF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OE. ②AF﹣BF=2OE

证明:如图3,延长OE,过点B作BH⊥OE于点H

∴∠EHB=90° ∵OE⊥MN,BF⊥MN

∴∠AEO=∠HEF=∠BFE=90° ∴四边形HBFE为矩形 ∴BF=HE,EF=BH ∵四边形ABCD是正方形 ∴OA=OB,∠AOB=90° ∴∠AOE+∠BOH=∠OBH+∠BOH ∴∠AOE=∠OBH ∴△AOE≌△OBH(AAS) ∴AE=OH,OE=BH, ∴AF﹣BF

=AE+EF﹣HE=OH﹣HE+OE=OE+OE=2OE ③BF﹣AF=2OE,

如图4,作OG⊥BF于G,则四边形EFGO是矩形,

∴EF=GO,GF=EO,∠GOE=90°, ∴∠AOE+∠AOG=90°.

在正方形ABCD中,OA=OB,∠AOB=90°, ∴∠AOG+∠BOG=90°, ∴∠AOE=∠BOG. ∵OG⊥BF,OE⊥AE, ∴∠AEO=∠BGO=90°. ∴△AOE≌△BOG(AAS), ∴OE=OG,AE=BG,

∵AE﹣EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF,

∴BF﹣AF=BG+GF﹣(AE﹣EF)=AE+OE﹣AE+EF=OE+OE=2OE, ∴BF﹣AF=2OE.

2.已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.

(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;

(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;

(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由. 【答案】(1)见解析; (2)存在,理由见解析; (3)不成立.理由如下见解析. 【解析】

试题分析:(1)由b=2a,点M是AD的中点,可得AB=AM=MD=DC=a,又由四边形ABCD是矩形,即可求得∠AMB=∠DMC=45°,则可求得∠BMC=90°;

(2)由∠BMC=90°,易证得△ABM∽△DMC,设AM=x,根据相似三角形的对应边成比

22

例,即可得方程:x﹣bx+a=0,由b>2a,a>0,b>0,即可判定△>0,即可确定方程有

两个不相等的实数根,且两根均大于零,符合题意;

22

(3)由(2),当b<2a,a>0,b>0,判定方程x﹣bx+a=0的根的情况,即可求得答

案.

试题解析:(1)∵b=2a,点M是AD的中点, ∴AB=AM=MD=DC=a,

又∵在矩形ABCD中,∠A=∠D=90°, ∴∠AMB=∠DMC=45°, ∴∠BMC=90°. (2)存在, 理由:若∠BMC=90°, 则∠AMB+∠DMC=90°, 又∵∠AMB+∠ABM=90°, ∴∠ABM=∠DMC, 又∵∠A=∠D=90°, ∴△ABM∽△DMC, ∴

AMAB?, CDDMxa?, ab?x22

整理得:x﹣bx+a=0, ∵b>2a,a>0,b>0, ∴△=b2﹣4a2>0,

设AM=x,则

∴方程有两个不相等的实数根,且两根均大于零,符合题意, ∴当b>2a时,存在∠BMC=90°, (3)不成立. 理由:若∠BMC=90°,

22

由(2)可知x﹣bx+a=0,

∵b<2a,a>0,b>0, ∴△=b2﹣4a2<0, ∴方程没有实数根,

∴当b<2a时,不存在∠BMC=90°,即(2)中的结论不成立. 考点:1、相似三角形的判定与性质;2、根的判别式;3、矩形的性质

3.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′的位置,AB′与CD交于点E.

(1)求证:△AED≌△CEB′

(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG +

PH的值.

【答案】(1)证明见解析;(2). 【解析】 【分析】

(1)由折叠的性质知,

得到(2)由

; ,可得

中,利用勾股定理即可求得

质,可得【详解】 (1) 又 (2)

, ,

四边形

,, ;

, 为矩形,

,易证得四边形

,又由的长,再过点作

,即可求得

的长,然后在

,则由

于,由角平分线的性

是矩形,继而可求得答案.

中考数学压轴题专题平行四边形的经典综合题及答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c9f15i5gesz2r4yi9c8hj79c964hjsm00lfm_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top