34 图3-2 复位电路图 3.5 时钟振荡电路 时钟电路提供单片机的时钟控制信号,单片机时钟产生方式有内部时钟方式和外部时钟方式。最常用的是内部时钟方式是采用外接晶振和电容组成的。 时钟振荡电路如图3-3所示: J1C730PFY111.0592MHZC630PFJ2J1J2 图3-3 时钟振荡电路 单片机内部有一个用于构成振荡器的高增益反向放大器,引脚XTAL1和引脚XTAL2分别是反相放大器的输入端和输出端,由这个放大器与作为反馈元件的片外晶体或陶瓷谐振器一起构成一个自己振荡器,这种方式形成的时钟信号称为内部时钟方式。系统的时钟电路设计是采用的内部方式,即利用芯片内部的振荡电路。内部方式时,时钟发生器对振荡脉冲二分频,如晶振为12MHz,时钟频率就为6MHz。晶振的频率可以在1MHz-24MHz内选择。电容取30PF左右。因此,此系统电路的晶体振荡器的值为12MHz,电容应尽可能的选择陶瓷电容,电容值为30μF。在焊接刷电路板时,晶体振荡器和电容应尽可能安装得与单片机芯片靠近,以减少寄生电容,更好地保证震荡器稳定和可靠地工作。XTAL1是片内振荡器的反相放大器输入端,XTAL2则是输出端,使用外部振荡器时,外部振荡信号应直接加到XTAL1,而XTAL2悬空。 4 温度检测电路
本系统采用的K型(镍铬-镍硅)热电偶,其可测量1312℃以内的温度,其线性度较好,而且价格便宜。K型热电偶的输出是毫伏级电压信号,最终要将其转换成数字信号与CPU通信。传统的温度检测电路采用“传感器-滤波器-放大器-冷端补偿-线性化处理-A/D转换”模式,转换环节多、电路复杂、精度低。在本系统中,采用的是高精度的集成芯片MAX6675来完成“热电偶电势-温度”的转换,不需外围电路、I/O接线简单、精度高、成本低。
MAX6675是MAXIM公司开发的K型热电偶转换器,集成了滤波器、放大器等,并带有热电偶断线检测电路,自带冷端补偿,能将K型热电偶输出的电势直接转换成12位数字量,分辨率0.25℃。温度数据通过SPI端口输出给单片机,其冷端补偿的范围是-20~80℃,测量范围是0~1023.75℃。表1为MAX6675的引脚功能图。
当P2.5为低电平且P2.4口产生时钟脉冲时,MAX6675的SO脚输出转换数据。在每一个脉冲信号的下降沿输出一个数据,16个脉冲信号完成一串完整的数据输出,先输出高电位D15,最后输出的是低电位D0,D14-D3为相应的温度转换数据。当P2.5为高电平时,MAX6675开始进行新的温度转换。在应用MAX6675时,应该注意将其布置在远离其它I/O芯片的地方,以降低电源噪声的影响;MAX6675的T-端必须接地,而且和该芯片的电源地都是模拟地,不要和数字地混淆而影响芯片读数的准确性[2]。
引脚号 1 2 3 4 5 6 7 8 名称 GND T- T+ VCC SCK SO NC 功能 接地端 热电偶负极(使用时接地) 热电偶正极 电源端 串行时钟输入端 片选信号 数据串行输出口 悬空不用 表1 MAX6675的引脚功能图
图4-1为本系统中温度检测电路。
图4-1 温度检测电路
5 时钟电路
在系统中需要准确显示升温时间、恒温时间等,因而选用了时钟芯片DS12887构成定时电路来完成对时间的准确计时。DS12887具有时钟、闹钟、12/24小时选择和闰年自动补偿功能;包含有10B的时钟控制寄存器、4B的状态寄存器和114B的通用RAM;具有可编程方波输出功能;报警中断、周期性中断、时钟更新中断可由软件屏蔽或测试。使用时不需任何外围电路,并具有良好的外围接口。在本系统中,DS12887的地址/数据复用总线与单片机的P0口相连。通过定时器中断,CPU每隔0.4秒读一次DS12887的内部时标寄存器,得到当前的时间,并送到液晶显示器进行显示。每当电阻炉从一个状态转入另一个状态,CPU通过DS12887把时间清零,重新开始计时。此外,通过DS12887,还可以设定电阻炉的加热时间和恒温时间[3]。电路如图5-1中所示。
图5-1 键盘、时钟、报警和控温电路
6 显示电路
电子设计中常用的输出显示设备有两种:数码管和LCD。
数码管是现在电子设计中普遍使用的一种显示设备,每个数码管由七个发光二极管按照一定的排列结构组成,根据七个发光二极管的正负极连接不同,又分为共阴极数码管和共阳极数码管两种,选择的数码管不同,程序设计上也有一定的差别。数码管显示的数据内容比较直观,通常显示从0到9中的任意一个数字,一个数码管可以显示一位,多个数码管就可以显示多位,在显示位数比较少的电路中,程序编写,外围电路设计都十分简单,但是当要显示的位数相对多的时候,数码管操作起来十分烦琐,显示的速度受到限制。
液晶显示屏具有体积小、功耗低、显示内容丰富等特点,用户可以根据自己的需求,显示自己所需要的、甚至是自己动手设计的图案。当需要显示的数据比较复杂的时候,它的优点就突现出来了,并且当硬件设计完成时,可以通过软件的修改来不断扩展系统显示能力。外围驱动电路设计比较简单,显示能力的扩展将不会涉及到硬件电路的修改,可扩展性很强。字符型液晶显示屏已经成为了单片机应用设计中最常用的信息显示器件之一。不足之处在于其价格比较昂贵,驱动程序编写比较复杂。
相关推荐: