精 品 试 卷
【分析】根据每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,可得甲的成本,乙的成本;根据乙种袋装粗粮的销售利润率是20%,可得乙的售价,根据每袋乙种粗粮售价比每袋甲种粗粮售价高20%,可得甲的售价,根据甲的利润+乙的利润=(甲的成本+乙的成本)×24%,根据等式的性质,可得答案.
【解答】解:设A的单价为x元,B的单价为y元,C的单价为z元,当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲的销售量为a袋,乙的销售量为b袋,由题意,得 A一袋的成本是7.5x=3x+y+z, 化简,得 y+z=4.5x;
乙一袋的成本是x+2y+2z=x+2(y+z)=x+9x=10x, 乙一袋的售价为10x(1+20%)=12x, 甲一袋的售价为10x. 根据甲乙的利润,得
(10x﹣7.5x)a+20%×10xb=(7.5xa+10xb)×24% 化简,得
2.5a+2b=1.8a+2.4b 0.7a=0.4b =, 故答案为:.
40.(2019?临安区)已知:2+=2×,3+=3×,4+符合前面式子的规律,则a+b= 109 .
【分析】要求a+b的值,首先应该认真仔细地观察题目给出的4个等式,找到它们的规律,即中,b=n+1,a=(n+1)﹣1.
【解答】解:根据题中材料可知=∵10+=10×, ∴b=10,a=99, a+b=109.
三.解答题(共10小题)
17
22
2
2
=4×
2
,5+=5×
2
,…,若10+=10×
2
,
精 品 试 卷
41.(2019?宿迁)解方程组:.
【分析】直接利用加减消元法解方程得出答案. 【解答】解:①×2﹣②得: ﹣x=﹣6, 解得:x=6, 故6+2y=0, 解得:y=﹣3, 故方程组的解为:
42.(2019?白银)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.
【分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论. 【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱, 根据题意得:解得:
.
, . ,
答:合伙买鸡者有9人,鸡的价格为70文钱.
43.(2019?宜昌)我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.
【分析】直接利用5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,分别得出等式组成方程组求出答案.
【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛, 则
,
18
精 品 试 卷
解得:,
答:1个大桶可以盛酒
斛,1个小桶可以盛酒斛.
44.(2019?常德)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.
(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?
(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?
【分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再利用一次函数的性质即可解决最值问题. 【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克, 根据题意得:解得:
.
,
答:该店5月份购进甲种水果190千克,购进乙种水果10千克.
(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克, 根据题意得:w=10a+20(120﹣a)=﹣10a+2400. ∵甲种水果不超过乙种水果的3倍, ∴a≤3(120﹣a), 解得:a≤90. ∵k=﹣10<0,
∴w随a值的增大而减小,
∴当a=90时,w取最小值,最小值﹣10×90+2400=1500. ∴月份该店需要支付这两种水果的货款最少应是1500元.
19
精 品 试 卷
45.(2019?黄冈)在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.
【分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.
【解答】解:设订购了A型粽子x千克,B型粽子y千克, 根据题意,得解得
.
,
答:订购了A型粽子40千克,B型粽子60千克.
46.(2019?烟台)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.
(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?
(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?
【分析】(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;
(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得. 【解答】解:(1)设本次试点投放的A型车x辆、B型车y辆, 根据题意,得:解得:
,
,
答:本次试点投放的A型车60辆、B型车40辆;
(2)由(1)知A、B型车辆的数量比为3:2,
设整个城区全面铺开时投放的A型车3a辆、B型车2a辆, 根据题意,得:3a×400+2a×320≥1840000,
20
相关推荐: