第一范文网 - 专业文章范例文档资料分享平台

2020年中考数学复习冲刺提分训练: 《一次函数》(解析版)

来源:用户分享 时间:2025/5/22 16:15:22 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

5.解:(1)由已知A(0,6k),B(2k,0), ∴tan∠ABO=; (2)∵CD⊥AB, ∴∠DCB=∠BAO, ∴DE=

d,EO=6k﹣d,CO=3EO=18k﹣3d,

∴BC=2k+18k﹣3d=20k﹣3d, ∵DE=BD, ∴∴d=

(20﹣3d)=3×

d,

k;

(3)由(2)可得:C(﹣8k,0),E(0,k),D(k,k), 则直线AC的解析式为y=x+6k, 直线CD的解析式为y=x+k, ∵PF=EF,

∴F是P与E的中点, ∴F点纵坐标为k, 设F(m,m+6k), ∴m+6k=k,

∴m=﹣∴F(﹣∴P(﹣∵BD=∴GB=∴G(

k, k,k), k,0), k,DG:GB=4:5, k, k,k),

x+

k,

∴PG的直线解析式为y=∴H(﹣∴FH=∴k=, ∴P(﹣14,0). 6.解:(1)∵∴b=﹣4,a=4∴B(﹣4,0);

k,k), k=

+(b+4)2=0 ,

(2)取AC的中点G,连接OG、OH, ∵O、G分别为OB、OC的中点, ∴OG∥AB,

∴OG=AB=OB,∠BOG=120°, ∵OE⊥AB,OH⊥AC, ∴∠EOH=120°,

∵∠BOE+∠EOG=∠GOH+∠EOG=120°, ∴∠BOE=∠GOH, ∴△BOE≌△GOH(ASA), ∴OE=OH, ∴∠OEH=30°; (3)设M(0,t),

过点M作y轴垂线,过点N作y轴垂线,过点Q作x轴垂线,分别相交于点R、T点,

∵MN∥AC, ∴直线MN:y=﹣联立

x+t,

解得,

∴N(,﹣),

∵正方形MPNQ,

∴QM=QN,∠MQN=90°,

∵∠RQM+∠TQN=∠RQM+∠RMQ=90°, ∴∠RMQ=∠TQN, ∴△RMQ≌△TQN(AAS), ∴QR=TN,RM=QT, 设Q(m,n), ∴﹣n+t=﹣m+∴m=∴Q(

,n=,

,﹣m=n+, ),

∵OQ=∴OQ=OM, ∴

=1是定值.

=t

7.解:(1)过点C作CT⊥AB, ∵OC是∠OBA的角平分线, ∴OC=OT, ∵G(8,6), ∴OB=BT=6,OA=8, ∴AB=10,

在Rt△ATC中,CT2+16=(8﹣CT)2, ∴CT=3, ∴OC=3, ∴C(3,0) ∵B(0,6),

∴直线BC的解析式y=﹣2x+6; (2)0≤t≤1时,如图1,PA=5t, ∵PE⊥AB,

在Rt△AEP中,PE=PA?sin∠BAO=5t?=3t,

EA=PA?cos∠BAO=5t?=4t,

∴BE=10﹣4t, ∵∠OBC=∠ABC,

在Rt△BEF中,EF=BE?tan∠EBF=(10﹣4t)?=5﹣2t, ∴PF=EF﹣PE=5﹣2t﹣3t=5﹣5t, ∴y=5﹣5t;

当1<t≤1.6时,如图2,

由上可知,PF=PE﹣EF=3t﹣(5﹣2t)=5t﹣5, ∴y=5t﹣5 ∵y≠0, ∴t≠1,

∴0≤t<1时,y=5﹣5t;1<t≤1.6时,y=5t﹣5; (3)当DP∥AB时,如图3, 此时,0≤t<1,

2020年中考数学复习冲刺提分训练: 《一次函数》(解析版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c9g1wy9onzc01k8300wxv0h1ll01eyq01c4j_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top