第一范文网 - 专业文章范例文档资料分享平台

2020年中考数学复习冲刺提分训练: 《一次函数》(解析版)

来源:用户分享 时间:2025/5/22 21:18:37 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

∵ON平分∠AOC, ∴∠AOQ=∠COQ, 又OQ=OQ.

∴△POQ≌△MOQ(SAS), ∴PQ=MQ, ∴AQ+PQ=AQ+MQ,

当A、Q、M在同一直銭上,且AM⊥OC吋,AQ+MQ最小, 即AQ+PQ存在最小値; ∴AB⊥ON, ∴∠AEO=∠CEO, ∴△AEO≌△CEO(ASA), ∴OC=OA=6, ∵△OAC的面积为9, ∴OC?AM=9, ∴AM=3,

∴AQ+PQ存在最小值,最小值为3.

13.解:(1)由题可求A(0,6),B(﹣3,0), ∴AO=6,BO=3, ∵AO=BC, ∴BC=6, ∴CO=BC﹣BO=3, ∴C(3,0),

设直线AC的解析式为y=kx+b,将点C与A代入,可得

∴y=﹣2x+6;

(2)过点P作PM⊥x轴交于点M, ∵点P的横坐标为t, ∴P(t,﹣2t+6), ∴PM=﹣2t+6, ∴S△PBC=

BC?PM=×6×(﹣2t+6)=﹣6t+18, BC?AO=18,

S△ABC=

∴S=S△ABC﹣S△PBC=6t;

(3)过点B作BF平分∠ABD,且BF=CE,连接AF ∵∠ABD=2∠ACE, ∴∠ABF=∠ACE ∵BO=CO,AO⊥BC, ∴AB=AC,

∴△ABF≌△ACE(SAS), ∴AF=AE,∠BAF=∠CAE, ∵AE平分∠OAC, ∴∠OAE=∠CAE, ∵∠BAO=∠CAO, ∴∠BAF=∠FAO,

过点F作FG⊥AB于点G,FK⊥AD于点K,FH⊥BD于点H, ∵AF平分∠BAD, ∴FG=FK, ∵BF平分∠ABD, ∴FG=FH, ∴FH=FK,

∴DF平分∠ADB, ∴∠BDF=∠ADF,

∵AF=AE,∠FAD=∠EAD,AD=AD, ∴△AFD≌△AED(SAS), ∴∠ADF=∠ADE,

∴∠ADF=∠ADE=∠BDF=60°, ∴∠CDP=∠CDO=60°, 过点C作CN⊥BP于点N, ∵CO⊥AO, ∴CN=CO=3, ∵CA=CL,

∴△AOC≌△LNC(HL), ∴NL=AO=6, ∵tan∠NDC=∴

, , .

∴DN=∴DL=6+

14.解:(1)∵∠B=30°,EF⊥BC, ∴BC=2EF,

∴=,

故答案为;

(2)过点A作AF⊥BC,交BD于点E, ∵∠ABC=60°,BD平分∠ABC, ∴EF=BE, ∴AE+BE=AE+EF,

当A、E、F三点共线时,AE+BE的值最小, 在Rt△ABF中,AB=6, ∴AF=3

∴AE+BE的最小值3

(3)∵等腰Rt△OPQ且∠POQ=90°,P点在直线y=﹣x+4上, ∴Q点在直线AC上, ∵A(4,0),C(0,﹣4), ∴直线AC的解析式为y=x﹣4,

作D点关系直线AC的对称点D',过点D'作D'H⊥y轴,交直线AC于点Q, 则HD'即为所求; ∵∠BCA=45°, ∴HQ=

CQ,

由对称性可得:DQ=D'Q, ∴DQ+

CQ=D'Q+HQ=HD'即为最小;

∵D(3,0), ∴D'(4,1), ∴HD'=4, ∴DQ+

CQ的最小值为4;

此时Q(3,1), 设P(x,x﹣4),

2020年中考数学复习冲刺提分训练: 《一次函数》(解析版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c9g1wy9onzc01k8300wxv0h1ll01eyq01c4j_8.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top