第一范文网 - 专业文章范例文档资料分享平台

新人教版数学九年级下册《解直角三角形应用》5课时教案设计

来源:用户分享 时间:2025/5/29 12:40:38 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

如果在引导学生讨论后小结,效果会更好,不仅使学生掌握选何关系式,更重要的是知道为什么选这个关系式,以培养学生分析问题、解决问题的能力及计算能力,形成良好的学习习惯.

另外,本题是把解等腰三角形的问题转化为直角三角形065 A 的问题,渗透了转化的数学思想.

例2.如图,一艘海轮位于灯塔P的北偏东650方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南东340方向上的B处。这时,

P 海轮所在的B处距离灯塔P有多远(精确到0.01海里)?

034 引导学生根据示意图,说明本题已知什么,求什么,利

用哪个三角形来求解,用正弦、余弦、正切、余切中的哪一种解较为简便?

B

3巩固练习

为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角∠ACD=52°,已知人的高度是1.72米,求树高(精确到0.01米).

首先请学生结合题意画几何图形,并把实际问题转化为数学问题. Rt△ACD中,∠D=Rt∠,∠ACD=52°,CD=BE=15米,CE=DB=1.72米,求AB? (三)总结与扩展

请学生总结:通过学习两个例题,初步学会把一些实际问题转化为数学问题,通过解直角三角形来解决,具体说,本节课通过让学生把实际问题转化为数学问题,利用正切或余切解直角三角形,从而把问题解决. 本课涉及到一种重要教学思想:转化思想. 四、布置作业

1.某一时刻,太阳光线与地平面的夹角为78°,此时测得烟囱的影长为5米,求烟囱的高(精确到0.1米).

2.如图6-24,在高出地平面50米的小山上有一塔AB,在地面D测得塔顶A和塔基B的仰面分别为50°和45°,求塔高.

3.在宽为30米的街道东西两旁各有一楼房,从东楼底望西楼顶仰角为45°,从西楼顶望东楼顶,俯角为10°,求西楼高(精确到0.1米).

解直三角形应用(四)

教学目标

1、知识目标:致使学生懂得什么是横断面图,能把一些较复杂的图形转化为解直角三角形的问题.

2、能力目标:逐步培养学生分析问题、解决问题的能力.

3、情感目标:培养学生用数学的意识;渗透转化思想;渗透数学来源于实践又作用于实践的观点. 教学重点、难点

1.重点:把等腰梯形转化为解直角三角形问题; 2.难点:如何添作适当的辅助线. 教学过程

1.出示已准备的泥燕尾槽,让学生有感视印象,将其横向垂直于燕尾槽的平面切割,得横截面,请学生通过观察,认识到这是一个等腰梯形,并结合图形,向学生介绍一些专用术语,使学生知道,图中燕尾角对应哪一个角,外口、内口和深度对应哪一条线段.这一介绍,使学生对本节课内容很感兴趣,激发了学生的学习热情. 2.例题

例 燕尾槽的横断面是等腰梯形,图6-26是一燕尾槽的横断面,其中燕尾角B

是55°,外口宽AD是180mm,燕尾槽的深度是70mm,求它的里口宽BC(精确到1mm).

分析:(1)引导学生将上述问题转化为数学问题;等腰梯形ABCD中,上底AD=180mm,高AE=70mm,∠B=55°,求下底BC.

(2)让学生展开讨论,因为上节课通过做等腰三角形的高把其分割为直角三角形,从而利用解直角三角形的知识来求解.学生对这一转化有所了解.因此,学生经互相讨论,完全可以解决这一问题.

例题小结:遇到有关等腰梯形的问题,应考虑如何添加辅助线,将其转化为直角三角形和矩形的组合图形,从而把求等腰梯形的下底的问题转化成解直角三角形的问题. 3.巩固练习

如图6-27,在离地面高度5米处引拉线固定电线杆,拉线和地面成60°角,求拉线AC的长以及拉线下端点A与杆底D的距离AD(精确到0.01米).

分析:(1)请学生审题:因为电线杆与地面应是垂直的,那么图6-27中△ACD是直角三角形.其中CD=5m,∠CAD=60°,求AD、AC的长. (2)学生运用已有知识独立解决此题.教师巡视之后讲评. (三)小结

请学生作小结,教师补充.

本节课教学内容仍是解直角三角形,但问题已是处理一些实际应用题,在这些问题中,有较多的专业术语,关键是要分清每一术语是指哪个元素,再看是否放在同一直角三角形中,这时要灵活,必要时还要作辅助线,再把问题放在直角三角

形中解决.在用三角函数时,要正确判断边角关系. 四、布置作业

1.如图6-28,在等腰梯形ABCD中,DC∥AB, DE⊥AB于E,

3 AB=8, DE=4, cosA=5, 求CD的长.2.教材课本习题P96第6,7,8题

解直三角形应用(五)

教学目标

1、知识目标:巩固直角三角形中锐角的三角函数,学会解关于坡度角和有关角度的问题.

2、能力目标:逐步培养学生分析问题解决问题的能力,进一步渗透数形结合思想和方法.

3、德育目标:培养学生用数学的意识;渗透数学来源于实践又反过来作用于实践的辩证唯物主义观点. 教学重点、难点和疑点

1.重点:能熟练运用有关三角函数知识. 2.难点:解决实际问题.

3.疑点:株距指相邻两树间的水平距离,学生往往理解为相邻两树间的距离而造成错误. 教学过程

1.探究活动一

教师出示投影片,出示例题.例1 如图6-29,在山坡上种树,要求株距(相邻两树间的水平距离)是5.5m,测得斜坡的倾斜角是24°,求斜坡上相邻两树的坡面距离是多少(精确到0.1m).

分析:1.例题中出现许多术语——株距,倾斜角,这些概念学生未接触过,比较生疏,而株距概念又是学生易记错之处,因此教师最好准备教具:用木板钉成一斜坡,再在斜坡上钉几个铁钉,利用这种直观教具更容易说明术语,符合学生的思维特点. 2.引导学生将实际问题转化为数学问题画出图形(上图6-29(2)).已知:Rt△ABC中,∠C=90°,AC=5.5,∠A=24°,求AB.

3.学生运用解直角三角形知识完全可以独立解决例1.教师可请一名同学上黑板做,其余同学在练习本上做,教师巡视.

答:斜坡上相邻两树间的坡面距离约是6.0米.

教师引导学生评价黑板上的解题过程,做到全体学生都掌握.

2.探究活动二例2 如图6-30,沿AC方向开山修渠,为了加快施工速度,要从小山的另一边同时施工,从AC上的一点B取∠ABD=140°,BD=52cm,∠D=50°,那么开挖点E离D多远(精确到0.1m),正好能使A、C、E成一条直线?

这是实际施工中经常遇到的问题.应首先引导学生将实际问题转化为数学问题. 由题目的已知条件,∠D=50°,∠ABD=140°,BD=520米,求DE为多少时,A、C、E在一条直线上。

学生观察图形,不难发现,∠E=90°,这样此题就转化为解直角三角形的问题了,全班学生应该能独立准确地完成.

解:要使A、C、E在同一直线上,则∠ABD是△BDE的一个外角. ∴∠BED=∠ABD-∠D=90°. ∴DE=BD·cosD =520×0.6428=334.256≈334.3(m).

答:开挖点E离D334.3米,正好能使A、C、E成一直线,

提到角度问题,初一教材曾提到过方向角,但应用较少.因此本节课很有必要补充一道涉及方向角的实际应用问题,出示投影片. 练习P95 练习1,2。

补充题:正午10点整,一渔轮在小岛O的北偏东30°方向,距离等于10海里的A处,正以每小时10海里的速度向南偏东60°方向航行.那么渔轮到达小岛O的正东方向是什么时间?(精确到1分).

学生虽然在初一接触过方向角,但应用很少,所以学生在解决这个问题时,可能出现不会画图,无法将实际问题转化为几何问题的情况.因此教师在学生独自尝试之后应加以引导:

(1)确定小岛O点;(2)画出10时船的位置A;(3)小船在A点向南偏东60°航行,到达O的正东方向位置在哪?设为B;(4)结合图形引导学生加以分析,可以解决这一问题.

此题的解答过程非常简单,对于程度较好的班级可以口答,以节省时间补充一道有关方向角的应用问题,达到熟练程度.对于程度一般的班级可以不必再补充,只需理解前三例即可.

补充题:如图6-32,海岛A的周围8海里内有暗礁,鱼船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东60°,航行12海里到达点C处,又测得海岛A位于北偏东30°,如果鱼船不改变航向继续向东航行.有没有触礁的危险?

如果时间允许,教师可组织学生探讨此题,以加深对方向角的运用.同时,学生对这种问题也非常感兴趣,教师可通过此题创设良好的课堂气氛,激发学生的学习兴趣.

若时间不够,此题可作为思考题请学生课后思考. (三)小结与扩展 教师请学生总结:在这类实际应用题中,都是直接或间接地把问题放在直角三角形中,虽然有一些专业术语,但要明确各术语指的什么元素,要善于发现直角三角形,用三角函数等知识解决问题.

利用解直角三角形的知识解决实际问题的一般过程是: (1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题); (2)根据条件的特点,适当选用锐角三角函数等去解直角三角形; (3)得到数学问题的答案; (4)得到实际问题的答案。

四、布置作业课本习题P97 9,10

新人教版数学九年级下册《解直角三角形应用》5课时教案设计.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c9gblm50ul1797950lpza3sk4u09qt500fik_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top