x1i?11,令x?,可得ln.令i?1,2,L,n?1?xiii?12131n?11111可得ln?,ln?,…,ln,相加可得ln?n?1????L?,命题?1223nn?123n?1法1:在(1)中取a?1,可得ln?1?x??获证.
法2:令t?,则ln则F??t??1ii?11tt,构造函数F?t??ln?1?t??,??ln?1?t??0?t?1,
ii?11?t1?t11t???0,于是F?t?在?0,1?上递增,所以F?t??F?0??0,于1?t?1?t?2?1?t?2是lni?11. ?ii?1下同法1.
[特训作业]
1.已知函数f?x??alnxb ?,曲线y?f?x?在点?1,f?1??处的切线方程为x?2y?3?0.
x?1xlnx. x?1(1)求a、b的值;
(2)证明:当x?0,且x?1时,f?x???x?1?a??lnx?x??b. 由于直线x?2y?3?0的斜率为?1,且过点【解析】(1)f??x???2x22?x?1??f?1??1?b?1???1,1?,所以?1,解得a?1,b?1. 1,即?a?b???f??1????2?22?【证明】(2)由(1)知f?x??lnx1lnxlnx1lnx ?,所以f?x?????x?1xx?1x?1xx?1?1?1??1?1?lnx?x??0hx?lnx?x?.构造函数???????2?x??2?x???2?2lnx12??0?Hx???1?x2x1?x2?x?1??011?1?(x?0),则h??x????1?2???,于是h?x?在?0,???上递减.
x2?x?2x2当0?x?1时,h?x?递减,所以h?x??h?1??0,于是H?x??1h?x??0;当x?1时,1?x2h?x?递减,所以h?x??h?1??0,于是H?x??综上所述,当x?0,且x?1时,f?x??1h?x??0. 1?x2lnx. x?1
b(a、b?R). ex1b(1)若a?b?,求函数F?x??f?x??axlnx?x的单调区间;
2e1(2)若a?1,b??1,求证:f?x??ax2?bx?lnx?1?2e?2.
2?x?2??x?1?. 111111【解析】(1)当a?b?,F?x??lnx?x2?x,F??x???x???x222x2422.已知函数f?x???ax?1?lnx?ax2?bx?由F??x??0可得0?x?1,由F??x??0可得x?1,所以F?x?的递增区间为?0,1?,递减区间为?1,???.
【证明】(2)若a?1,b??1,f?x??ax2?bx?lnx?1?2e?2?xlnx?12112.令??1?2exe211ex?x11.设h?x??ex?x,则G?x??xlnx?x,则G??x??lnx?1?x,G???x???x?xxexeeeh??x??ex?1?0,所以h?x?在?0,???上递增,所以h?x??h?0??1,所以G???x??0,所
1??11??e2??e以G??x?在?0,???上递增.又因为G????e?0,G??2??e?1?0,所以G??x?恰
?e??e?11?11?有一个零点x0??2,?,即G??x0??lnx0?1?x?0,且当0?x?x0时,G??x??0,当
e0?ee?x?x0时,G??x??0,所以G?x?在?0,x0?上递减,在?x0,???上递增,所以
G?x??G?x0??x0lnx0?1?x0lnx0?lnx0?1. ex01?11?设??x??xlnx?lnx?1,x??2,?,则???x??1?lnx??1?1?e?0,所以??x?在
x?ee?112?11??1?1,?x???ln?ln?1???1.命题获证. 上递增,所以??0?2??2?2e2e2e2?ee??e?e3.已知函数f?x??ex?exlnx.
(1)求曲线y?f?x?在?1,f?1??处的切线方程; (2)求证:f?x??ex2.
【解析】(1)f??x??ex?e?1?lnx?,所以f??1??2e,又f?1??e,所以y?f?x?在?1,f?1??处的切线方程为y?e?2e?x?1?,即y?2ex?e.
【证明】(2)法1:f?x??ex2?ex?exlnx?ex2?ex?1?xlnx?x2?0,构造函数
g?x??ex?1?xlnx?x2,则g??x??ex?1?1?lnx?2x,g???x??ex?1?1?2,xg????x??ex?1?1g????x??0,.因为g????x?在?0,???上递增,且g????1??0,所以当0?x?1时,
x2g????x??0,当x?1时,所以g???x?在?0,1?上递减,在?1,???上递增,所以g???x??g???1??0,
于是g??x?在?0,???上递增,又因为g??1??0,所以当0?x?1时,g??x??0,g?x?递减,当x?1时,g??x??0,g?x?递增,所以g?x??g?1??0,命题获证.
ex?1ex?1法2:f?x??ex?e?exlnx?ex?构造函数G?x???lnx?x?0,?lnx?x,
xx2x2则G??x??ex?1?x?1?x2e1??1?xx?1?x?1??x?x2??x?1??ex?1?x?x2x2.令H?x??ex?1?x,则
H??x??ex?1?1,由H??x??0可得x?1,由H??x??0可得0?x?1,于是H?x?在?0,1?上
递减,在?1,???上递增,于是H?x??H?1??0.于是当0?x?1时,G??x??0,当x?1时,
G??x??0,所以G?x?在?0,1?上递减,在?1,???上递增,于是G?x??G?1??0,命题获证.
4.已知函数f?x???x?a?lnx?1. x(其中a?R)
21x,求a的值; 2(1)若曲线y?f?x?在点?x0,f?x0??处的切线方程为y?(2)若
1,求证:f?x??0. ?a?2e(e是自然对数的底数)
2e?1y?x0?02??x0?11a3?【解析】(1)f??x??lnx??,依题意,有?y0??x0?a?lnx0?x0,解得?或
a?12x2??a31?lnx??0x?2?20??x0?a,所以a?1. ?a?1?
(2)法1:令g?x??f??x?,则g??x??1a1因为所以g??x??0,即g?x??2,?a?2e,xx2eaa3a12e1?a?在?0,???上递增.因为g???ln???ln??ln??0,
a2222222??2g?a??lna?a3111?a???lna??ln??0,所以g?x?在?,a?上有唯一零点x0.当a222e2?2?0?x?x0时,g?x??0,当x?x0时,g?x??0,所以f?x?在?0,x0?上递减,在?x0,???上
递增,所以当x?x0时,f?x?取到最小值f?x0???x0?a?lnx0?1x0.因为2g?x0??lnx0??a3?1a3a3??0,所以lnx0??,所以f?x0???x0?a?????x0? x02x02?x02?2a2511a?2?x0??a??2x0?5ax0?2a2????2x0?a??x0?2a?,因为x0????,a?,所以
x022x02x0?2?1?a?2e时,f?x??0. 2ea法2:当x?a时,f?a???0.
2f?x0??0,所以当
当x?a时,f?x???x?a?lnx???1xx?0??x?a??lnx???0.令22x?a??????x1a2x2?5ax?2a2?2x?a??x?2a?F?x??lnx?,则F??x???,由??2222?x?a?x2?x?a?2x?x?a?2x?x?a?F??x??0可得0?x?aa或x?2a,由F??x??0可得?x?a或a?x?2a,所以F?x?在22?a??a?0,上递增,在???,a?上递减,在?a,2a?上递减,在?2a,???上递增. 2???2?aaa12e1?a?2?ln??ln??0,因为F???ln?22222?a??2?2??a??2?F?2a??ln2a?2a111?ln2a??ln??0,所以当0?x?a时,F?x??0,所以
2?2a?a?22e2f?x???x?a?F?x??0,当x?a时,F?x??0,所以f?x???x?a?F?x??0.
相关推荐: