第一范文网 - 专业文章范例文档资料分享平台

2020-2021中考数学备考之反比例函数压轴突破训练∶培优篇及答案

来源:用户分享 时间:2025/5/30 15:00:52 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2020-2021中考数学备考之反比例函数压轴突破训练∶培优篇及答案

一、反比例函数

1.如图,已知A(﹣4, ),B(﹣1,2)是一次函数y=kx+b与反比例函数 (m≠0,m<0)图象的两个交点,AC⊥x

轴于

C,BD⊥y

轴于

D.

(2)求一次函数解析式及m的值;

(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值? (3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标. 【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值;

(2)把A(﹣4, ),B(﹣1,2)代入y=kx+b得 , 解得

所以一次函数解析式为y= x+

把B(﹣1,2)代入y=

得m=﹣1×2=﹣2;

(3)解:如下图所示:

),

设P点坐标为(t, t+

∵△PCA和△PDB面积相等, ∴

?

?(t+4)=

?1?(2﹣

t﹣

),即得t=﹣

∴P点坐标为(﹣ ,

).

【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y= 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到 ? ?(t+4)= ?1?(2﹣ t﹣ ),解方程得到t=﹣ ,从而可确定P点坐标.

2.如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣

2),与y轴交于点C.

(1)m=________,k1=________;

(2)当x的取值是________时,k1x+b> ;

(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标. 【答案】(1)4; (2)﹣8<x<0或x>4

(3)解:由(1)知,y1= 的坐标是(4,4). ∴CO=2,AD=OD=4. ∴S梯形ODAC=

?OD=

x+2与反比例函数y2= , ∴点C的坐标是(0,2),点A

×4=12,

∵S四边形ODAC:S△ODE=3:1, ∴S△ODE=

S梯形ODAC=

×12=4,

OD?DE=4,

∴DE=2.

∴点E的坐标为(4,2). 又点E在直线OP上, ∴直线OP的解析式是y= ∴直线OP与y2=

x,

).

的图象在第一象限内的交点P的坐标为(4 ,2

【解析】【解答】解:(1)∵反比例函数y2= 的图象过点B(﹣8,﹣2), ∴k2=(﹣8)×(﹣2)=16, 即反比例函数解析式为y2=

将点A(4,m)代入y2= ,得:m=4,即点A(4,4), 将点A(4,4)、B(﹣8,﹣2)代入y1=k1x+b, 得:

解得:

∴一次函数解析式为y1= x+2,

故答案为:4, ;(2)∵一次函数y1=k1x+2与反比例函数y2= 的图象交于点A(4,4)和B(﹣8,﹣2),

∴当y1>y2时,x的取值范围是﹣8<x<0或x>4, 故答案为:﹣8<x<0或x>4;

【分析】(1)由A与B为一次函数与反比例函数的交点,将B坐标代入反比例函数解析式中,求出k2的值,确定出反比例解析式,再将A的坐标代入反比例解析式中求出m的值,确定出A的坐标,将B坐标代入一次函数解析式中即可求出k1的值;(2)由A与B横坐标分别为4、﹣8,加上0,将x轴分为四个范围,由图象找出一次函数图象在反比例函数图象上方时x的范围即可;(3)先求出四边形ODAC的面积,由S反比例函数解析式即可得.

四边形

ODAC:

S△ODE=3:1得到△ODE的面积,继而求得点E的坐标,从而得出直线OP的解析式,结合

3.如图,一次函数y=kx+b(k<0)与反比例函数y= 的图象相交于A、B两点,一次函数

的图象与y轴相交于点C,已知点A(4,1) (1)求反比例函数的解析式;

(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.

【答案】(1)解:∵点A(4,1)在反比例函数y= ∴反比例函数的解析式为y=

的图象上, ∴m=4×1=4,

的图象上, ∴设点B的坐标为(n,

).

(2)解:∵点B在反比例函数y=

将y=kx+b代入y=

中,得:

kx+b= ∴4n=﹣

,整理得:kx2+bx﹣4=0, ,即nk=﹣1①.

令y=kx+b中x=0,则y=b, 即点C的坐标为(0,b), ∴S△BOC=

bn=3,

∴bn=6②.

∵点A(4,1)在一次函数y=kx+b的图象上, ∴1=4k+b③.

联立①②③成方程组,即

解得:

∴该一次函数的解析式为y=﹣

x+3

【解析】【分析】(1)由点A的坐标结合反比例函数系数k的几何意义,即可求出m的值;(2)设点B的坐标为(n, ),将一次函数解析式代入反比例函数解析式中,利用根与系数的关系可找出n、k的关系,由三角形的面积公式可表示出来b、n的关系,再由点A在一次函数图象上,可找出k、b的关系,联立3个等式为方程组,解方程组即可得出结论.

4.如图①所示,双曲线y= (k≠0)与抛物线y=ax2+bx(a≠0)交于A、B、C三点,已知B(4,2),C(-2,-4),直线CO交双曲线于另一点D,抛物线与x轴交于另一点E.

(1)求双曲线和抛物线的解析式;

(2)在抛物线上是否存在点P,使得∠POE+∠BCD=90°?若存在,请求出满足条件的点P的坐标;若不存在,请说明理由;

(3)如图②所示,过点B作直线L⊥OB,过点D作DF⊥L于F,BD与OF交于点P,求 的值.

【答案】(1)解:把B(4,2)代人y= (k≠0)得2= 元,解得k=8z, ∴双曲线的解析式为y= , 把B(4,2),C(-2,-4)代入y=ax2+bx得,

2020-2021中考数学备考之反比例函数压轴突破训练∶培优篇及答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c9gud71mml1797950lpza3sk4u09qt500fjo_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top