22222(6-7)+(5-7)+(7-7)+(9-7)+(8-7)=2, …………3分 甲班的方差s?52122222(4-7)+(8-7)+(9-7)+(7-7)+(7-7)14=, …………5分 乙班的方差s?552222因为s1,甲班的方差较小,所以甲班的成绩比较稳定. ………………6分 ?s2 (Ⅱ)X可能取0,1,2
P(X?0)?21131331211??,P(X?1)?????,P(X?2)???, 5255210525220 1 2 所以X分布列为: X P 13 21011311?. …………………………………9分 数学期望EX?0??1??2?5210101 5Y可能取0,1,2
313248342114P(Y?0)???,P(Y?1)?????,P(Y?2)???,
55255525555525所以Y分布列为: 0 1 2 Y 3148 P 252525
数学期望EY?0?31486?1??2??. …………………………12分 2525255(20)解:(Ⅰ)
b?1,e?c3=, ?a?2,b?1, a2x2?椭圆C方程为?y2?1. ………………………………………2分
4x2y2x2(Ⅱ)法一:椭圆C1:2?2?1,当y?0时,y?n1?2,
mnm·9·
故y???nx?2m11?xm22,
n?当y0?0时,k??2x0?mn1n2x0??2x0??2?. ……………4分 2ymmy00x1?02nm1n2x0切线方程为y?y0??2??x?x0?,
my0x0xy0y?2?1. …………………………6分 2mnxxyy同理可证,y0?0时,切线方程也为02?02?1.
mnxxyy当y0=0时,切线方程为x??m满足02?02?1.
mnxxyy综上,过椭圆上一点Q(x0,y0)的切线方程为02?02?1. ……………………7分
mn22n2x0x?m2y0y?m2y0?n2x0?m2n2,
解法2. 当斜率存在时,设切线方程为y?kx?t,联立方程:
?x2y2?2?2?1222222可得nx?m(kx?t)?mn,化简可得: ?mn?y?kx?t?(n2?m2k2)x2?2m2ktx?m2(t2?n2)?0,①
由题可得:??4m4k2t2?4m2(n2?m2k2)(t2?n2)?0, ……………………4分 化简可得:t?mk?n,
2222m2ktm2k??①式只有一个根,记作x0,x0??2,x0为切点的横坐标, 22n?mktn2x0n2x0m2k切点的纵坐标y0?kx0?t?,所以??2,所以k??2,
ty0nmy0n2x0所以切线方程为:y?y0?k(x?x0)??2(x?x0),
my0化简得:
x0xy0y?2?1. …………………………… 6分 m2n·10·
当切线斜率不存在时,切线为x??m,也符合方程
x0xy0y?2?1, 2mnxxyyx2y2综上:2?2?1在点(x0,y0)处的切线方程为02?02?1.
mnmn(其它解法可酌情给分) ………………………… 7分
x2?y2?1的切线,切点(Ⅲ)设点P(xp,yp)为圆x?y?16上一点,PA,PB是椭圆422A(x1,y1),B(x2,y2),过点A的椭圆的切线为
x2x?y2y?1. 4两切线都过P点,?x1x?y1y?1,过点B的椭圆的切线为4x1xp4?y1yp?1,xxp4x2xp4?y2yp?1.
?切点弦AB所在直线方程为14?M(0,),N(,0),
ypxp?yyp?1. …………………… 9分
22161?161?xp?yp?MN?2?2=?2?2??
?16xpyp?xyp??p22?1?y2x2y21?xpppp=?2?17?16?2???17?216?2?216?xp?ypxp?yp?16???25??. ?16?当且仅当
x2py2p?16y2px2p,即xP?26416,yP2?时取等, 55?MN?55,?MN的最小值为. ……………………………………12分
44(21)(本小题满分12分) 解:(Ⅰ)f'(x)?f'(1)e2x?2?2x?2f(0),所以f'(1)?f'(1)?2?2f(0),即f(0)?1.
f?(1)?2?e,所以f'(1)?2e2, 又f(0)?2所以f(x)?e2x?x2?2x. ……………………………………4分
·11·
(Ⅱ)
f(x)?e2x?2x?x2,
x111?g(x)?f()?x2?(1?a)x?a?ex?x2?x?x2?(1?a)x?a?ex?a(x?1)2444 ……………5分
.
?g?(x)?ex?a,
( x ) 在R上单调递增; .……………6分 ①当a≤0时,g?(x)?0,函数 g?②当a?0时,由g(x)?e?a?0得x?lna,
∴x????,lna?时,g?(x)?0, g(x)单调递减;x??lna,???时,g?(x)?0,g(x)单调递增.综上,当a≤0时,函数g(x)的单调递增区间为(??,??);当a?0时,函数g(x)的单调递增区间为?lna,???,单调递减区间为???,lna?. .……………8分 (Ⅲ)解:设p(x)?xe?lnx,q(x)?ex?1?a?lnx, xp'(x)??e1??0,?p(x)在x?[1,??)上为减函数,又p(e)?0, x2x?当1?x?e时,p(x)?0,当x?e时,p(x)?0.
11q'(x)?ex?1?,q''(x)?ex?1?2?0,
xx?q'(x)在x?[1,??)上为增函数,又q'(1)?0,
?x?[1,??)时,q'(x)?0,?q(x)在x?[1,??)上为增函数, ?q(x)?q(1)?a?2?0.
①当1?x?e时,|p(x)|?|q(x)|?p(x)?q(x)?设m(x)?ex?1?e?a, xee?ex?1?a,则m'(x)??2?ex?1?0,?m(x)在x?[1,??)上为减函数, xx?m(x)?m(1)?e?1?a,
ex?1比e+a更接近lnx. xex?1x?1②当x?e时,|p(x)|?|q(x)|??p(x)?q(x)???2lnx?e?a?2lnx?e?a,
x2x?12x?1x?1设n(x)?2lnx?e?a,则n'(x)??e,n''(x)??2?e?0,
xxa?2,?m(x)?0,?|p(x)|?|q(x)|,?·12·
相关推荐: