第一范文网 - 专业文章范例文档资料分享平台

2017年山东省临沂市高考数学二模试卷(文科)

来源:用户分享 时间:2025/5/15 4:46:23 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

n=1,S=k

满足条件n<4,执行循环体,n=2,S=k﹣=,

满足条件n<4,执行循环体,n=3,S=﹣=,

满足条件n<4,执行循环体,n=4,S=﹣=,

此时,不满足条件n<4,退出循环,输出S的值为, 由题意可得:=1.5,解得:k=6. 故选:B.

8.(5分)已知由一组样本数据确定的回归直线方程为

,且

,发现

有两组数据(2.6,2.8)与(1.4,5.2)误差较大,去掉这两组数据后,重新求得回归直线的斜率为1.4,那么当x=6时,的估计值为( ) A.9.6 B.10 C.10.6 D.9.4

【解答】解:由样本数据点集{(xi,yi)|i=1,2,…,n}求得的回归直线方程为为

,且=2,

∴=1.5×2+1=4,故数据的样本中心点为(2,4); 去掉(2.6,2.8)与(1.4,5.2),

重新求得的回归直线的斜率估计值为1.4,样本中心点是(2,4), 回归直线方程设为:=1.4x+a,代入(2,4), 求得a=1.2,

∴回归直线l的方程为:=1.4x+1.2,

将x=6代入回归直线方程求得=1.4×6+1.2=9.6. 故选:A.

9.(5分)若一个底面是等腰直角三角形的直三棱柱的正视图如图所示,其顶点

都在一个球面上,则该球的表面积为( )

A.6π或5π B.3π或5π C.6π D.5π

【解答】解:①当此正视图是底面三角形的一腰与高组成,此时三棱柱对应的正方体长宽高分别是1,1,1,其体对角线长度为

②当正视图是等腰三角形的斜边高与棱柱的高组成的,此时三棱柱对应的长方体长宽高分别是

,;

故选B.

10.(5分)已知函数

,若不等式f(x)﹣a(x+1)>0的解集中有且仅

,1,所以体对角线长度为

,所以其外接球的表面积为,所以外接球表面积为

有一个整数,则实数a的取值范围是( ) A.

B.

C.

D.

【解答】解:f′(x)=

∴当x<1时,f′(x)>0,当x>1时,f′(x)<0,

∴f(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减, 作出y=f(x)的函数图象如图所示:

∵由f(x)﹣a(x+1)>0仅有一个整数解得f(x)>a(x+1)只有一整数解, 设g(x)=a(x+1),

由图象可知:当a≤0时,f(x)>g(x)在(0,+∞)上恒成立,不符合题意, 当a>0时,若f(x)>g(x)只有1个整数解,则此整数解必为1,

∴,即,解得≤a<.

故选D.

二、填空题:本大题共5小题,每小题5分,共25分.把正确答案填写在答题卡给定的横线上.

11.(5分)若x0是函数f(x)=log2x+2x的零点,则x0= 【解答】解:由f(x)=log2x+2x,得f′(x)=∴函数f(x)=log2x+2x在(0,+∞)上为增函数, 又f()=

>0(x>0),

∴函数f(x)=log2x+2x有唯一的零点. 故答案为:.

12.(5分)若函数是奇函数,则f(a﹣b)= ﹣ .

【解答】解:根据题意,函数,

设x>0,则﹣x<0,

则有f(x)=x2+,f(﹣x)=a(﹣x)2+又由函数f(x)为奇函数, 则有﹣(x2+)=ax2﹣, 分析可得a=﹣1,b=2, 则a﹣b=﹣3,

则f(a﹣b)=f(﹣3)=﹣f(3)=﹣(32+)=﹣故答案为:﹣

13.(5分)已知3sin2θ=5cosθ+1,则cos(π+2θ)= 【解答】解:由3sin2θ=5cosθ+1, 可得:3(1﹣cos2θ)=5cosθ+1

3cos2θ+5cosθ﹣2=0,即(3cosθ﹣1)(cosθ+2)=0, ∴cosθ=.

那么:cos(π+2θ)=﹣cos2θ=﹣(2cos2θ﹣1)=1﹣2cos2θ=1﹣2×=. 故答案为.

14.(5分)已知二次函数f(x)=ax2﹣4bx+1,点(a,b)是区域

=ax2﹣,

的随机点,则函数y=f(x)在区间[1,+∞)上是增函数的概率为 .

2017年山东省临沂市高考数学二模试卷(文科).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c9hxmt9gszn8c83h0epna2cg5h8ins2016fh_3.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top