-
∴y??x?(?2)??2,即所求切线方程为3x?3y?8?0. 322(2)∵f'(x)??x?4ax?3a??(x?a)(x?3a).
当a?0时,由f'(x)?0,得a?x?3a;由f'(x)?0,得x?a或x?3a. ∴函数y?f(x)的单调递增区间为(a,3a),单调递减区间为(??,a)和(3a,??), ∵f(3a)?0,f(a)??43a, 343
a. 3
∴当a?0时,函数y?f(x)的极大值为0,极小值为?(3)f'(x)??x?4ax?3a??(x?2a)?a, ∵f'(x)在区间?2a,2a?2?上单调递减,
2222∴当x?2a时,f'(x)max?a,当x?2a?2时,f'(x)min?a?4. ∵不等式|f'(x)|?3a恒成立,
22?a?0,?2∴?a?3a,解得1?a?3, ?a2?4??3a,?故a的取值范围是?1,3?.
欢迎访问“高中试卷网”——http://sj.fjjy.org -
相关推荐: