第一范文网 - 专业文章范例文档资料分享平台

2014年考研数学二真题与答案

来源:用户分享 时间:2025/6/3 4:30:22 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2014年考研数学二真题与解析

一、选择题 1—8小题.每小题4分,共32分.

11.当x?0时,若ln(1?2x),(1?cosx)?均是比x高阶的无穷小,则?的可能取值范围是( )

(A)(2,??) (B)(1,2) (C)(,1) (D)(0,)

??1212???1?【详解】ln?(1?2x)~2?x?,是?阶无穷小,(1?cosx)?~1x?是阶无穷小,由题意可知?2

??1?2???1122所以?的可能取值范围是(1,2),应该选(B). 2.下列曲线有渐近线的是

(A)y?x?sinx (B)y?x2?sinx(C)y?x?sin (D)y?x?sin1x21 x【详解】对于y?x?sin,可知limx??1xy1?1且lim(y?x)?limsin?0,所以有斜渐近线y?x

x??x??xx应该选(C)

3.设函数f(x)具有二阶导数,g(x)?f(0)(1?x)?f(1)x,则在[0,1]上( )

(A)当f'(x)?0时,f(x)?g(x) (B)当f'(x)?0时,f(x)?g(x) (C)当f??(x)?0时,f(x)?g(x) (D)当f??(x)?0时,f(x)?g(x) 【分析】此题考查的曲线的凹凸性的定义及判断方法.

【详解1】如果对曲线在区间[a,b]上凹凸的定义比较熟悉的话,可以直接做出判断. 显然

g(x)?f(0)(1?x)?f(1)x就是联接(0,f(0)),(1,f(1))两点的直线方程.故当f??(x)?0时,曲线是凹

的,也就是f(x)?g(x),应该选(D)

【详解2】如果对曲线在区间[a,b]上凹凸的定义不熟悉的话,可令

F(x)?f(x)?g(x)?f(x)?f(0)(1?x)?f(1)x,则F(0)?F(1)?0,且F\(x)?f\(x),故当f??(x)?0时,曲线是凹的,从而F(x)?F(0)?F(1)?0,即F(x)?f(x)?g(x)?0,也就是

Page 1 of 10

f(x)?g(x),应该选(D)

?x?t2?7,4.曲线? 上对应于t?1的点处的曲率半径是( ) 2?y?t?4t?1(A)

1010(B) (C)1010 (D)510 50100y\(1?y'2)32【详解】 曲线在点(x,f(x))处的曲率公式K?,曲率半径R?1. K22dxdydy2t?42dy1t?2t,?2t?4,所以??1?,2?本题中??3,

dtdtdx2tt2tdxt?对应于t?1的点处y'?3,y\??1,所以K?应该选(C)

5.设函数f(x)?arctanx,若f(x)?xf'(?),则limx?0y\(1?y'2)3?11010,曲率半径R?1?1010. K?2x2?( )

(A)1 (B)

121 (C) (D)

3321133x?0时,arctanx?x?x?o(x). ,(2)231?x【详解】注意(1)f'(x)?由于f(x)?xf'(?).所以可知f'(?)?1f(x)arctanxx?arctanx2,, ????xx1??2(arctanx)213x)?o(x3)13?. 3x3limx?0?2x2?limx?0x?arxtanx?limx(arctanx)2x?0x?(x??2u6.设u(x,y)在平面有界闭区域D上连续,在D的内部具有二阶连续偏导数,且满足?0及

?x?y?2u?2u. ?2?0,则( )2?x?y

(A)u(x,y)的最大值点和最小值点必定都在区域D的边界上; (B)u(x,y)的最大值点和最小值点必定都在区域D的内部;

(C)u(x,y)的最大值点在区域D的内部,最小值点在区域D的边界上;

Page 2 of 10

搜索更多关于: 2014年考研数学二真题与答案 的文档
2014年考研数学二真题与答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c9meh275kon79c964hv1h_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top