?x2?y2?1???8tt2?4?1?8t?4,2直线TB方程为:y?x?1,联立?,得xE?2,所以E?2?t?4t?4tt?41?? ?y?x?1?t?到TC:3x?ty?t?0的距离
2?24tt?t?4??2?t2t?4t?4d?t?92?2t?t2?12?t?9?t?4?22,
?x2?y2?1?324t? 直线TC方程为:y?x?1,联立?4,得xF?2,
tt?363?y?x?1?t??24t36?t2?24t??36?t2??,2所以F?2?,所以TF??t?2? ???2?2t?36t?36t?36??t?36????22?t2?t2?12???3t2?36?22?t2?36?2??t2?12??t2?9?2?t2?36?2?t?2?12?t2?9t2?36, 2所以S△TEF222t?t2?12?11?t?12?t?92t?t?12?, ?TF?d????222222t2?36t?9?t?4??t?36??t?4?22S△TBC?t?36??t?4??所以k?, 22S△TEF?t?12?令t2?12?m?12,则k?(m?8)(m?24)161924?1??≤,
m2mm23当且仅当m?24,即t??23时,取“?”, 所以k的最大值为
4. 3?x2?y2?1?1?8t?解法二:直线TB方程为y?x?1,联立?4,得xE?2,
tt?41?y?x?1?t??x2?y2?1?324t?直线TC方程为:y?x?1,联立?4,得xF?2,
tt?36?y?3x?1?t?1TB?TC?sin?BTCS△TBC2TB?TCTBTCxT?xBxT?xC???? k???S△TEF1TE?TF?sin?ETFTE?TFTETFxT?xExT?xF2t2?4???t2?36??tt???2, 28t24t?t?12???t?12?t?2t?2t?4t?36(m?8)(m?24)161924令t2?12?m?12,则k??1??≤,
m2mm23.
当且仅当m?24,即t??23时,取“?”, 所以k的最大值为
4. 318解
.
相关推荐: