第一范文网 - 专业文章范例文档资料分享平台

【金版教程】高考数学(理)二轮复习专题整合突破练习:高考中的数列(解答题型)含答案

来源:用户分享 时间:2025/11/8 16:17:45 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

点击观看解答视频

?1?

(1)求证:数列?S?是等差数列;

?n?

1113

(2)证明:当n≥2时,S1+2S2+3S3+…+nSn<2.

2S2n证明 (1)当n≥2时,Sn-Sn-1=,S--Sn=2SnSn-1,

2Sn-1n1

?1?11

??是以1为首项,2为公差的等差数列. -=2,从而SnSn-1?Sn?

11

(2)由(1)可知,S=S+(n-1)×2=2n-1,

n

1

111111

∴Sn=,∴当n≥2时,=nSn=n?2n-1?

-n?, ?2?n-1?

11111?31111?

1-+-+…+-?从而S1+2S2+3S3+…+nSn<1+2?223n-1n?=2?13

-2n<2. 6.已知数列{an}的前n项和为Sn,且a1=1,a2=4,Sn+1=5Sn-4Sn-1(n≥2),等差数列{bn}满足b6=6,b9=12,

(1)分别求数列{an},{bn}的通项公式;

1??

(2)若对于任意的n∈N,?Sn+3?·k≥bn恒成立,求实数k的取值范

??

*

围.

解 (1)∵Sn+1=5Sn-4Sn-1?Sn+1-Sn=4(Sn-Sn-1)?an+1=4an(n≥2)

∵a1=1,a2=4?a2=4a1,所以数列{an}为等比数列,an=4n-1, 3d=b9-b6=6?d=2,bn=6+(n-6)×2=2n-6,

故所求数列{an},{bn}的通项公式为an=4n-1,bn=2n-6. 1-4n1n

(2)数列{an}的前n项的和为Sn==(4-1),

1-436n-181??4n

?Sn+?·

3?k≥bn?3×k≥2n-6?k≥4n, ?

6n-186n-186?n-1?-18-18n+78设Cn=4n,Cn-Cn-1=4n-=, 4nn-1当n≤4时,Cn>Cn-1,当n≥5时,C=334128,所以k≥128.

4Cn

最大,所以

【金版教程】高考数学(理)二轮复习专题整合突破练习:高考中的数列(解答题型)含答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c9nzye3axky4g4gh0kzl91od1e2lms500xwg_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top