2013各区一模分类-----基本计算题(一)计算题
1、(2013海淀一模13.计算:12?2cos30??(3?1)?() .
018?1解:原式?23?2? ?3?1?8 ………………………4分 23?7.………………………5分
13?102、(2013东城一模 13.计算: ?12?2sin60??()?(2013).
解:原式=23?2?3?3?1 ………………4分 2 =3?2 . ………………5分
3、(2013西城一模 13.计算:8?(3?1)0?2sin45??3?1. .解:原式=22?1?2?21?. ………………………………………………4分 234 =2?. ………………………………………………… 5分
34、(2013朝阳毕业)14.(本小题5分)计算:1-2解:原式?1?22?2???02?8-2sin45?-()-1.
323?.…………………………………………………………………4分 221?2?. ………………………………………………………………………………5分
2?105、(2013顺义一模)13.计算:()?4sin60??(??3.14)?12.
13解:原式=3?4?3?1?23 …………………………………………4分 2 =2 ……………………………………………… 5分
6、(2013通州一模)13.计算:2?3tan30?2?3?1o??0?12.
解:原式=
13?3??1?23, ……………… 4分; 2313?3?1?23, =?3 . ……………… 5分. 220 =
?3??1??1?7、(2013房山一模)13. 计算:12????+tan60?. ?2??????2??3??1??1解:12???????+tan60?.
?2??2???0=23?1?2?3 --------------------------------------------------------4分 =33?3
--------------------------------------------------------5分
?1?1?8、(2013门头沟一模)13.计算:???3tan30??27?(??1)0.
?6??1?3?0 解: ???3tan??6??1?27???0?
1=6?3?3?33?1 ……………………………………………………………………4分 3=7?23 . ……………………………………………………………………………5分
?1?9、(2013密云毕业考试)13.计算:4??π-2??|?5|???
?3?0?2 解: 原式=2+1-5+9...................4分 =-7..............................5分
10、(2013延庆毕业考试)13.计算:︱-2︱+3sin30°-2-(2013??) .
0
?1解:原式?2?3?11??1 ………………………………………4分 22?2. ………………………………………………………………5分
11、(13丰台一模)13.计算:12?3?1?4sin60??(??2013)0. 解:原式=23? =
?12、(13平谷一模)13.计算: ()?201321?1013?4??1 -------- 4分 324. -------------- 5分 32si?n?60?. 123?12………………………………………………………………… …4分 2 ?1?3?2 3解: ?2?1?2? ?1?
3 . ……………………………………………………………………………… 5分
?1?1?13、(2013石景山一模)13.27????4cos30??3?8.
?2??1?解:27????4cos30??3?8 ?2? =33?2?4?-13?2 ……………………………4分 2 =3 …………………………………………………5分
14、(2013大兴一模)13.计算:(?1)2013??1?9?(3.14??)0?sin30?13. 2解:原式=– 1 –
11+ 3 + …………………………………………4分 22 = 2 . ……………………………………………………5分
0?1?15、(2013昌平一模)13.计算: 12?4sin60??????1?π?.
?3??1解:原式=23?4?32?3?1 …………………………………………………………… 4分
= -2. ……………………………………………………………………… 5分
????1?16、(2013怀柔一模) 13.计算:??2sin60??????12
?2013??2?解:原式=1-2?
0?13-2+23……………………… 4分2
=-1 +3 ……………………… 5分
基本计算题(二)解不等式(组)
?x?2?0,?1、(2013海淀一模)14.解不等式组:?x?1
?1?x.??2解:由①得 x??2.………………………2分
由②得 x?1.………………………4分
则不等式组的解集为?2?x?1.………………………5分
2、2013东城一模14.求不等式 2x+9 ≥ 3(x+2) 的正整数解. 解:2x?9?3x?6 , ………………1分
x?6? 9 , ………………2分 2x?3?x??3 , ………………3分 x?3. ………………4分
∴ 不等式的正整数解为1,2,3 . ………………5分
?4(x?1)?7x?8,?3、(2013西城一摸)14.解不等式组 ?并求它的所有整数解. x?2x?5?,?3?解:
?4(x?1)?7x?8 ?x?2?x?5??3? 由①得x?4. …………………………………………………………1分
13 由②得x?. …………………………………………………………3分
2 ∴ 原不等式组的解集是4?x?13. ………………………………… 4分 2 ∴ 它的整数解为4,5,6. ………………………………………… 5分
?5x?2?3?x?1??4、(2013朝阳毕业)15.(本小题5分)求不等式组 ?的整数解. 13?x?1??2?5x?2?3(x?1) ①?解: ? 13?x?1 ②??2解① 得 x>
5. …………………………………………………………………………2分 2解② 得 x≤4. ……………………………………………………………………………4分 原不等式组的整数解为3和4. ……………………………………………………………5分
?3x?1?2(x?1),?5、(2013顺义一模)14.解不等式组?x?3 并把解集在数轴上表示出来.
≥1,??2
解:解不等式3x?1?2(x?1),得x?3. ………………………………… 1分
x?3≥1,得x≥?1. ………………………………… 2分 2∴不等式组的解集为?1≤x?3. ………………………………… 4分
解不等式
在数轴上表示其解集为如图所示
…………………………………5分
?x?2?0,6、 (2013通州一模)14.解不等式组?
5x?1?2(x?1). ?
相关推荐: