20. 解:(1)当0????4时,E在AB上,F在BC上S11??? ?1?tan??tan????,
22?4????1?11??; ?当0???时,E、F都在AB上,S??3?2?tan???4tan???????4????(2)当0??由于tan????4时,S1?1??2??1?tan???,
2?tan???0,1?,所以当tan??2?1时,Smax?2?2;
3?3??, 42(3)在“一个来回”中,OE共转动了2?其中点G被照到时,OE共转动了2??6??3,
点G被照到的时间为t21. 解:(1)∵ ∴
??3???9?????2分钟.
?32?f?1??0即1??3k?2k??3k?2k?0,
?1?3k??1?2k??0即?3k?1??2k?1??0,
?3k?1?0?3k?1?01??k或?k∴ 0?k?;
3?2?1?0?2?1?0(2)由
f?x??0即?x?3k??x?2k??0的解集为?a2k?1,a2k?,
?a2k?1?a2k?3k?2k∴ ?, k?a2k?1?a2k?3k?2∴ k?1时,a1?a2?3?1?21?5,k?2时,a3?a4?3?2?22?10,
∴ a1?a2?a3?a4?5?10?15,
?a2n??a1?a2???a3?a4????3?n?2n??3?1?2?S2n?a1?a2?a3?a4???3?1?21???3?2?22????a2n?1?a2n?
?n??21?22??2n?
1?n?n2?1?2??3??21?2(3)Tnn??3n223?n?2?2n?1; 2n?b1?b2??bn,n?2时,Tn?Tn?1?bn???1?1, n3n?2n为奇数时,Tn?Tn?1?0,即T3?T2,T5?T4,T7?T6,…,Tn?Tn?1,…, n为偶数时,Tn?Tn?1?0,即T2?T1,T4?T3,T6?T5,…,Tn?Tn?1…,
∴ Tn的最大值必为
?Tn?的偶数项,故当n为偶数时(n?4)时,
11n?1????0, n?1nn3?n?1??23n?23n?n?1??2111?T2?????.
3?23?2?228Tn?Tn?2?bn?1?bn??∴ n为偶数时,
?Tn?为递减数列,∴ ?Tn?max
相关推荐: