第一范文网 - 专业文章范例文档资料分享平台

2019-2020年中考数学真题汇编 一次函数

来源:用户分享 时间:2025/5/29 0:33:02 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

中考数学真题汇编:一次函数

一、选择题

1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是( )

A. ①③ B. ③④ C. ②④ D. ②③ 【答案】B

2.把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( ) A.

B.

2

C. D. 【答案】D

3.在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是( )。 A.5 B.4 C.3 D.2 【答案】C

4.如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为( )

A.

B.

C.

D.

【答案】A

5.如图,函数

( )

和 ( 是常数,且 )在同一平面直角坐标系的图象可能是

A. B. C.

D.

【答案】B 6.如图,菱形

的边长是4厘米,

,动点 以1厘米/秒的速度自 点出发沿

运动至 点停止若点

方向同时出

运动至 点停止,动点 以2厘米/秒的速度自 点出发沿折线 发运动了 秒,记

的面积为

,下面图象中能表示 与 之间的函数关系的是( )

A. B.

C.

D.

【答案】D 7.如图,直线

都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为

,对角线AC在

直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于

之间分的长度和为y,则y关于x的函数图象大致为( )

A. B.

C. D.

【答案】A

8.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是( )

A. B. C. D.

【答案】D 9.一次函数

和反比例函数

在同一直角坐标系中大致图像是( )

A.B.C.D.

【答案】A

10.如图,平面直角坐标系

中,点 的坐标为

轴,垂足为 ,点 从原点 出发

向 轴正方向运动,同时,点 从点 出发向点 运动,当点 到达点 时,点 、 同时停止运动,若点 与点 的速度之比为

,则下列说法正确的是( )

A. 线段 始终经过点

始终经

B. 线段 过点 C. 线段

始终经过点

D. 线段 始终经过某一定点 【答案】B

不可能

11.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是( )

A. 每月上网时间不足25 h时,选择A方式最省钱 B. 每月上网费用为60元时,B方式可上网的时间比A方式多

C. 每月上网时间为35h时,选择B方式最省钱 D. 每月上网时间超过70h时,选择C方式最省钱 【答案】D 二、填空题 12.将直线 【答案】

向上平移2个单位长度,平移后直线的解析式为________.

13.已知点A(x1 , y1)、B(x2 , y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为________. 【答案】y1>y2 14.已知点 是直线 为________. 【答案】( , )

上一点,其横坐标为

.若点 与点 关于 轴对称,则点 的坐标

15.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家,他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是________千米。

【答案】1.5

16.某日上午,甲、乙两车先后从A地出发沿一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是________。

【答案】60≤v≤80 17.如图,直线

与 轴、 轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边

形OEDC是菱形,则△OAE的面积为________.

【答案】

18.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为xcm,现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过定点A的三条棱长分别是10cm,10cm,ycm(y<15),当铁块的顶部高出水面2cm时,x,y满足的关系式是________。

【答案】y=(0

19.如图,正比例函数y=kx与反比例函数y= 的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是________ .

【答案】y= x-3 20.如图,一次函数

的图象相交于点

,则关于 的不等式组

的解集为________.

【答案】三、解答题

21.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象。

(1)根据图像,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量。 (2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程。

【答案】(1)解 :汽车行驶400千米,剩余油量30升,加满油时,油量为70升。 (2)解:设y=kx+b(k≠0),把点(0,70),(400,30)坐标代入得b=70,k=-0.1, ∴y=-0.1x+70,当y=5时,x=650,即已行驶的路程为650千米。 22.如图,在平面直角坐标系中,直线

过点

且与 轴交于点 ,把点 向左平移2平行的直线交 轴于点 .

个单位,再向上平移4个单位,得到点 .过点 且与

(1)求直线 (2)直线

的解析式;

交于点 ,将直线

沿

方向平移,平移到经过点 的位置结束,求直线

在平移过程中与 轴交点的横坐标的取值范围. 【答案】(1)解: 又

点 ,

在直线

上,

点 向左平移2个单位,又向上平移4个单位得到点 ,

, 与

平行,

直线 设直线 又

直线

的解析式为 过点

∴2=6+b,解得b=-4, 直线

的解析式为

代入

的解析式为 ,即 中,得

, ,即

中,得

,即

(2)解:将

故平移之后的直线 令 将

,得 代入

平移过程中与 轴交点的取值范围是:

23.为积极响应新旧动能转换.提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价 (单位:万元)成一次函数关系. (1)求年销售量 与销售单价 的函数关系式;

(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润.则该设备的销售单价应是多少万元?

【答案】(1)解:设年销售量y与销售单价x的函数关系式为y=kx+b(k≠0),将(40,600)、(45,550)代入y=kx+b,得:

解得:

∴年销售量y与销售单价x的函数关系式为y=﹣10x+1000.

(2)解:设此设备的销售单价为x万元/台,则每台设备的利润为(x﹣30)万元,销售数量为(﹣10x+1000)台,根据题意得:

(x﹣30)(﹣10x+1000)=10000, 整理,得:x2﹣130x+4000=0, 解得:x1=50,x2=80.

∵此设备的销售单价不得高于70万元,∴x=50. 答:该设备的销售单价应是50万元/台.

24.某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元. 设小明计划今年夏季游泳次数为 ( 为正整数). (1)根据题意,填写下表: 游泳次数 方式一的总费用(元) 方式二的总费用(元) 10 15 20 … … ________ … ________ 150 175 ________ 90 135 ________ (2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多? (3)当

时,小明选择哪种付费方式更合算?并说明理由.

;180;

.

.

【答案】(1)200;(2)解:方式一: 方式二:

,解得

,解得 .

∵ ,

∴小明选择方式一游泳次数比较多.

(3)解:设方式一与方式二的总费用的差为 元. 则 当 ∴当 ∵

时,即

,即

,得

. .

时,小明选择这两种方式一样合算. ,

∴ 随 的增大而减小. ∴当 当

时,有

时,有

,小明选择方式二更合算;

,小明选择方式一更合算.

25.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量 (件)与销售单价 (元)之间存在一次函数关系,如图所示.

(1)求 与 之间的函数关系式;

(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?

(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围. 【答案】(1)解:由题意得:

故y与x之间的函数关系式为:y=-10x+700 (2)解:由题意,得 -10x+700≥240, 解得x≤46,

设利润为w=(x-30)?y=(x-30)(-10x+700),

w=-10x2+1000x-21000=-10(x-50)2+4000, ∵-10<0,

∴x<50时,w随x的增大而增大, ∴x=46时,w大=-10(46-50)+4000=3840,

答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元 (3)解:w-150=-10x2+1000x-21000-150=3600, -10(x-50)2=-250, x-50=±5, x1=55,x2=45, 如图所示,由图象得:

当45≤x≤55时,捐款后每天剩余利润不低于3600元 (3)

2

2019-2020年中考数学真题汇编 一次函数.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c9st6z19g574n7xz5eecp3x5if1klmb00awo_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top