?lim(ax?1x?1?x?12) ?lim?x?1?x?1??,a?x?1?x?1?2?
a22
解得a?42,b?4. (6)由于lim(x?1)?0,.
x??15 根据等价无穷小关系确定参数.
(1)当x?0时,a(1?cos2x)~x2,求a. (2)当x(3)当x(4)当x?0?0?0时,x~ln(1?kx),求k.
时,1?tanx?1?sinx~1x?,求?.
4时,2sinx?sin2x~xk,求k.
?0解 (1)由于x时,1?cos2x?sin2x~x2故a?1.
(2) 当x?0,ln(1?x)~x, k?1. (3) 当x?0时,
lim1?tanx?1?sinxxlimlimlim3x?0?limtanx?sinxx?0?231?tanx?1?sinxx?3???121616tanx?sinxx233x?0?1612limsecx?cosx3xx22x?0
1?cosxxcosx22x?0?lim?141?cosxx?03cosxsinx2xx?0,故??3. (4) 当x?0时,
lim??2sinx?sin2xxlimlimx?03x?0?lim2cosx?2cos2x3x2x?02313?sinx?2sin2x2x?sinxx?43limsin2x2xx?0
x?0?1,故 k?3. 习题2.4
1利用函数连续性确定参数.
(1)
1??arctanf(x)??x?A?x?0在x?0x?0处连续,求A.
?sin2x,x?0,?(2)已知函数f(x)??连续,求参数k. x?3x2?2x?k,x?0?(3)
?eax?2af(x)???ax?3cos2xx?0x?0在(??,??)上连续,求a.
?1?cosax?sin2bx,x?0,?(4)已知函数f(x)??a,x?0,连续,求参数a, b.
?1?(1?4x)x,x?0?解 (1) 要使f(x)在x?0处连续,则f(0?0)?f(0?0), 又由于f(0?0)?limf(x)?limarctanx?0?x?0?1x??2,
从而A??2.
x?0(2) 由于f(x)是个分段函数,要使f(x)连续,只需证明f(x)在
f(0?0)?f(0?0),
处连续,即
又由于
f(0?0)?lim?3x?2x?k??k,2x?0?f(0?0)?limsin2xxx?0??lim2x?0?sin2x2x ?2,故 k?2.
(3) 由于f(x)是个分段函数,要使f(x)连续,只需证明f(x)在x?0处连续,即
f(0?0)?f(0?0),
又由于
f(0?0)?lim?ax?3cos2x??3,x?0?f(0?0)?lim?ex?0?ax?2a??1?2a,
故 a??1.
(4) 由于f(x)是个分段函数,要使f(x)连续,只需证明f(x)在
f(0?0)?f(0?0)?f(0),
x?0处连续,即
又由于
1f(0?0)?lim1?cosaxsinbx12x?0??lim2x?0??ax?22?bx??a222b4,1??4x4xf(0?0)?lim(1?4x)?lim?(1?4x)??e,
x?0?x?0???f(0)?a,22a?e,b?4e.2故
2寻找下列函数的可去间断点,并修改或补充间断点处函数值使其连续.
m(1)f(x)?ln(1?kx); (2)f(x)?xx?x|x|(x?1)22;
1(3)f(x)?cotx; (4)f(x)?sinx?sin.
x?2?x解 (1) 易见f(x)仅在x?0处无定义,故x?0为函数的间断点,且
m limf(x)?limln(1?kx)x?emk,
x?0x?0则x?0为可去间断点,故只需令f(0)?ex?x|x|(x?1)22mk,则f(x)在x?0处连续.
(2) 由于f(x)?x?x?1?|x|(x?1)(x?1),且
由于f(x)在x?0处极限不存在,故不是可去间断点;
112即可使函
x?0由于f(x)在x?1处
limf(x)?2故x?1是函数的可去间断点,可令
,f(1)?数在x?1处连续,
由于f(x)在x?0处极限不存在,故不是可去间断点.
?(3)由于f(x)?cotx,函数仅在x?处没有定义,且
?2?x2limf(x)?limx?cotx?2x???2?limx????tan??x??2?2?x??2?1,
2?xf(?2)?1x??2处连续.
故只需令即可使函数在
(4) 由于f(x)?sinx?sin1,函数仅在x?0处没有定义,且 xlimf(x)?limsinx?sinx?0x?01x?0,故只需令f(0)?0即可使函数在x?0处连续.
3计算下列极限:
(1)lim(n4?n?1?n2)(3n?4); (2)limx?1n??x?13;
x?1 (3)lim1?x?32?23x??8x; (4)limx(x2?1?x);
x??? (5)limx?1?442x?12x???x?x?x; (6)lim(x2?x?1?x2?x?1);
x???(7)limarcsin(x2?x?x);
x???44解 (1) lim(n4?n?1?n2)(3n?4)?lim(n?n?1?n)(3n?4)
n??n??(n?n?1?n)42 ?lim(n?1)(3n?4)(n?n?1?n)2n??42?32.
(2) 令t?6x,x?t,则
63x?t,x?t,则
3limx?1x?1x?13?limt?1t?123x?1?limt?t?1t?12x?1?32.
(3) lim1?x?32?3x??8x?limx??8?2??8?x3x??1?x?3?
相关推荐: