2017年湖南省长沙市中考数学试卷
一、选择题(本大题共12小题,每小题3分,共36分) 1.(3分)下列实数中,为有理数的是( ) A.
B.π C.
D.1
2.(3分)下列计算正确的是( )
2236
A.= B.a+2a=2a C.x(1+y)=x+xy D.(mn)=mn 3.(3分)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( )
A.0.826×106 B.8.26×107 C.82.6×106 D.8.26×108
4.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.直角三角形 B.正五边形
C.正方形 D.平行四边形
5.(3分)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形 6.(3分)下列说法正确的是( )
A.检测某批次灯泡的使用寿命,适宜用全面调查 B.可能性是1%的事件在一次试验中一定不会发生 C.数据3,5,4,1,﹣2的中位数是4 D.“367人中有2人同月同日出生”为必然事件 7.(3分)某几何体的三视图如图所示,因此几何体是( )
A.长方形 B.圆柱 C.球 D.正三棱柱
8.(3分)抛物线y=2(x﹣3)2
+4顶点坐标是( ) A.(3,4) B.(﹣3,4) C.(3,﹣4) D.(2,4) 9.(3分)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为(
第1页(共22页)
)
A.60° B.70° C.80° D.110° 10.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为( )
A.5cm B.10cm C.14cm D.20cm 11.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( ) A.24里 B.12里 C.6里 D.3里 12.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为( )
A.
B.
二、填空题(本大题共6小题,每小题3分,共18分)
2
13.(3分)分解因式:2a+4a+2= . 14.(3分)方程组
的解是 . C.
D.随H点位置的变化而变化
15.(3分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为 .
16.(3分)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是 .
第2页(共22页)
17.(3分)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差
22
分别是S甲=1.2,S乙=0.5,则在本次测试中, 同学的成绩更稳定(填“甲”或“乙”) 18.(3分)如图,点M是函数y=为 .
x与y=的图象在第一象限内的交点,OM=4,则k的值
三、解答题(本大题共8小题,共66分)
19.(6分)计算:|﹣3|+(π﹣2017)﹣2sin30°+(). 20.(6分)解不等式组
,并把它的解集在数轴上表示出来.
0
﹣1
21.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表. 组别 分数段 频次 频率 A 60≤x<70 17 0.17 B 70≤x<80 30 a C 80≤x<90 b 0.45 D 90≤x<100 8 0.08 请根据所给信息,解答以下问题: (1)表中a= ,b= ;
(2)请计算扇形统计图中B组对应扇形的圆心角的度数;
(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.
第3页(共22页)
22.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上. (1)求∠APB的度数;
(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?
23.(9分)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,(1)求证:OA=OB;
(2)已知AB=4,OA=4,求阴影部分的面积.
=
24.(9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元. (1)求一件A,B型商品的进价分别为多少元?
(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;
(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益. 25.(10分)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.
(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;
(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数y=(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;
2
(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax+3bx+3c(a≠0)
第4页(共22页)
交于B(x2,y2),C(x3,y3)两点.
①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;
②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.
26.(10分)如图,抛物线y=mx﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.
(1)若△OAC为等腰直角三角形,求m的值;
(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示); (3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4最小值.
my0﹣12
2
2
y0﹣50成立,求实数n的
第5页(共22页)
相关推荐: