.专业资料分享.
解:30×10÷5=60 28×45÷15=84
(84-60)÷(45-30)=1.6 1.6×25=40 60-1.6×30=12 12×25=300 300÷60=5(头)
40+5=45(头)
6、12头牛4周吃完6公顷的牧草,20头牛6周吃完12公顷的牧草.假设每公顷原有草量相等,草的生长速度不变.问多少头牛8周吃完16公顷的牧草? 解:设1头牛吃一周的草量为一份. (1)每公顷每周新长的草量:
(20×6÷12-12×4÷6)÷(6-4)=1(份) (2)每公顷原有草量: 12×4÷6-1×4=4(份) (3)16公顷原有草量: 4×16=64(份)
(4)16公顷8周新长的草量: 1×16×8=128(份)
(5)8周吃完16公顷的牧草需要牛数: (128+64)÷8=24(只)
1、在一片牧场里,放养4头牛,吃6亩草,18天可以吃完:放养6头牛,吃10亩草,30天可以吃完,请问放入多少头牛,吃8亩草,24天可以吃完?(假定这片牧场每亩中的原草量相同,且每天草的生长两相等) 解:4×18÷6=12 6×30÷10=18
(18-12)÷(30-18)=0.5 8×0.5=4 12-18×0.5=3 3×8=24 24÷24+4=5(头)
例题六 某火车站的检票口,在检票开始前已有一些人排队,检票开始后每分钟有10人前来排队检票,,一个检票口每分钟能让25人检票进站,如果只有一个检票口,检票开始8分钟后就没有人排队;如果有两个检票口,那么检票后多少分钟就没有人排队? 解:8分钟共检票:25×8=200(人) 原有人数位:200-8×10=120(人)
.WORD完美格式.
.专业资料分享.
开两个窗口需时:120÷(25×2-10)=3(分钟)
随堂练习:
1、车站开始检票时,有a名旅客排队等候进站,检票开始后,仍有旅客陆续前来,设旅客按固定的速度增加,检票的速度也是固定的,若开放一个检票口,则需要30分钟才可以将排队的旅客全部检票完毕,若开放两个检票口,则需要10分钟便可将排队的旅客全部检票完毕,如果要在5分钟内将排队的旅客全部检票完毕,使后来到站的旅客能随到随检,至少要同时开放几个检票口?
解:(1×30-2×10)÷(30-10)=0.5 1×30-0.5×30=15 15÷5+0.5=3.5(个) 要开4个检票口。
2、某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。从开始检票到等候检票的队伍消失,同时开4个检票口需要30分钟,同时开5个检票口需20分钟。如果同时打开7个检票口,那么需多少分钟? 解:30分钟共检票:30×4=120 20分钟共检票:20×5=100
人来的速度为:(120-100)÷(30-20)=2 原有人数:120-30×2=60 60÷(7-2)=12(分钟)
3、某火车站检票前开始排队,假若前来排队检票的人数均匀增加,若开一个检票口,需要20分钟可以检完;若开两个检票口,需要8分钟可以检完;若开三个检票口,需要多少多少分钟可以检完?
1解:(1×20-2×8)÷(20-8)=3 140 1×20-20×3 =3
401 ÷(3-33 )=5(分钟)
4、某天上海世博会中国馆的入口处已有945名游客开始等候检票进馆。此时每分钟还有若干人前来入口处准备进馆。如果打开4个检票口,15分钟游客可以全部进馆;如果打开8个检票口,7分钟游客可以全部进馆。现在要求在5分钟内所有游客全部进馆,需要打开几个检票口?(第九届希望杯培训题) 解:(4×15-8×7)÷(15-7)=0.5
.WORD完美格式.
.专业资料分享.
8×7-7×0.5=52.5
52.5÷5+0.5=11(个)
5、某个游乐场在开门前400人排队等候,开门后每分钟来的人数是固定的,一个入口每分钟可以进入10个游客,如果开放4个入口,20分钟就没有人来排队。现在开放6个入口,那么开门后多少分钟就没有人排队? 解:(10×4×20-400)÷20=20
400÷(6×10-20)=10(分)
6、物美超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款。某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了【浙江2006】d A.2小时 B.1.8小时 C.1.6小时 D.0.8小时
解:(80-60)×4=80(人) 80÷(80×2-60)=0.8(小时)
7、某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。从开始检票到等候检票的队伍消失,若同时开5个检票口则需要30分钟,若同时开6个检票口则需要20分钟。如果要使队伍10分钟消失,那么需要同时开几个检票口 解:(5×30-6×20)÷(30-20)=3 5×30-3×30=60 60÷10+3=9(个)
8、禁毒图片展8点开门,但很早便有人排队等候入场。从第一个观众到达时起,每分钟来的观众人数一样多。如果开3个入场口,8点9分就不再有人排队;如果开5个入场口,8点5分就没有人排队。第一个观众到达时距离8点还有多少分钟? 解:(3×9-5×5)÷(9-5)=0.5 3×9-0.5×9=22.5 22.5÷0.5=45(分) 9点-45分=8点15分
例题7、有一个牧场长满牧草,每天牧草匀速生长。这个牧场可供17头牛吃30天,可供19头牛吃24天。现有牛若干头在吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完。原来有牛多少头?
解:30天时牧场上共有草:30×17=510 24天时牧场上共有草:19×24=456
草生长的速度为:(510-456)÷(30-24)=9
.WORD完美格式.
.专业资料分享.
原有草量为:510-30×9=240 (240+4×2)÷(6+2)=31 31+9=40(头)
1、有一片草地,草每天草生长的速度相同,这片草地可供5头牛吃40天;或者供6头牛吃30天,如果4头牛吃了30天以后,又增加2头牛一起吃,这片草地还可以再吃几天? 解:(5×40-6×30)÷(40-30)=2 5×40-40×2=120 120-30×(4-2)=60 60÷(4+2-2)=15(天)
2、一片牧草,可供9头牛吃12天,也可供8头牛吃16天,现在开始只有4头牛吃,从第7天起又增加了若干头牛吃草,再吃6天吃完了所有的草,问从第7天起增加了多少头牛? 解:(8×16-9×12)÷(16-12)=5 9×12-12×5=48 48+(5-1)×6=54 54÷6=9(头) 9+5-4=10(头)
3.有一片草地,可供8只羊吃20天,或供14只羊吃10天.假设草的每天生长速度不变.现有羊若干只,吃了4天后又增加了6只,这样又吃了2天便将草吃完,问有羊多少只? 解:设一只羊吃一天的草量为一份. (1)每天新长的草量:
(8×20-14×10)÷(20-10)=2(份) (2)原有的草量: 8×20-2×20=120(份)
(3)若不增加6只羊,这若干只羊吃6天的草量,等于原有草量加上4+2=6天新长草量再减去6只羊2天吃的草量: 120+2×(4+2)-1×2×6=120(份) (4)羊的只数: 120÷6=20(只)
例题8、有一片牧草,每天生长的速度相同,现有这片牧草可供16头大牛吃20天,或者供80头小牛吃10天。如果1头大牛的吃草量等于3头小牛的吃草量,那么12头大牛与60头小牛一起吃草可以吃多少天?
解:(16×3×20-80)÷(20-10)=16
.WORD完美格式.
.专业资料分享.
80×10-16×10=640
640÷(12×3+60-16)=8(天)
1、一块牧草地,每天生长的速度相同,现在这片牧草可供16头牛吃20天,或者供80只羊吃12天,如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?
解:80只羊吃的草相当于:80÷4=20(头牛)吃的草 20天时草的总量为:16×20=320 12天时草的总量为:12×20=240
草生长的速度为:(320-240)÷(20-12)=10 原有草量为:240-10×12=120
60只羊所吃的草量相当于60÷4=15头牛所吃的草 120÷(10+15-10)=8(天)
2、有一片青草,每天生长的速度相同,已知这片青草可供15头牛吃20天,或者供76只羊吃12天。如果一头牛的吃草量等于4只羊的吃草量,那么8头牛与64只羊一起吃,可以吃多少天?
解:76÷4=19(牛)
(15×20-19×12)÷(20-12)=9 15×20-20×9=120 64÷4=16(牛)
120÷(8+16-9)=8(天)
3、一片牧草,每天生长的速度相同.现在这片牧草可供20头牛吃12天,或可供60只羊吃24天.如果1头牛的吃草量等于4只羊的吃草量,那么12头牛与88只羊一起吃可以吃多少天?
解:设1头牛吃一天的草量为一份. 60只羊相当于60÷4=15头牛 (1)每天新长的草量:
(15×24-20×12)÷(24-12)=10(份) (2)原有草量: 20×12-10×12=120(份) 或 15×24-10×24=120(份) (3)12头牛与88只羊吃的天数: 120÷(12+88÷4-10)=5(天)
.WORD完美格式.
相关推荐: