第一范文网 - 专业文章范例文档资料分享平台

初中数学中考泰安试题解析

来源:用户分享 时间:2025/5/23 6:40:20 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

∴×OA?|x|=5, ∴×2|x|=25, 解得x=±25. 当x=25时,y=﹣当x=﹣25时,y=﹣

=﹣;

=.

2

∴P点的坐标为(25,﹣)或(﹣25,).

点评:本题考查了正方形的性质,反比例函数与一次函数的交点问题,运用待定系数法求反比例函数与一次函数的解析式,三角形的面积,难度适中.运用方程思想是解题的关键. 26.(2013泰安)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点, (1)求证:AC=AB?AD; (2)求证:CE∥AD; (3)若AD=4,AB=6,求

的值.

2

考点:相似三角形的判定与性质;直角三角形斜边上的中线. 分析:(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应

2

边成比例,证得AC=AB?AD;

(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=AB=AE,继而可证得∠DAC=∠ECA,得到CE∥AD;

(3)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得解答:(1)证明:∵AC平分∠DAB, ∴∠DAC=∠CAB, ∵∠ADC=∠ACB=90°, ∴△ADC∽△ACB, ∴AD:AC=AC:AB,

2

∴AC=AB?AD;

(2)证明:∵E为AB的中点, ∴CE=AB=AE, ∴∠EAC=∠ECA, ∵∠DAC=∠CAB,

的值.

∴∠DAC=∠ECA, ∴CE∥AD;

(3)解:∵CE∥AD, ∴△AFD∽△CFE, ∴AD:CE=AF:CF, ∵CE=AB, ∴CE=×6=3, ∵AD=4, ∴∴

, .

点评:此题考查了相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用. 27.(2013泰安)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元? 考点:一元二次方程的应用. 专题:销售问题.

分析:根据纪念品的进价和售价以及销量分别表示出两周的总利润,进而得出等式求出即可. 解答:解:由题意得出:200×(10﹣6)+(10﹣x﹣6)(200+50x)+[(4﹣6)(600﹣200﹣(200+50x)]=1250, 即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1250, 整理得:x﹣2x+1=0, 解得:x1=x2=1, ∴10﹣1=9,

答:第二周的销售价格为9元.

点评:此题主要考查了一元二次方程的应用,根据已知表示出两周的利润是解题关键. 28.(2013泰安)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.

(1)证明:∠BAC=∠DAC,∠AFD=∠CFE. (2)若AB∥CD,试证明四边形ABCD是菱形;

(3)在(2)的条件下,试确定E点的位置,∠EFD=∠BCD,并说明理由.

2

考点:菱形的判定与性质;全等三角形的判定与性质. 分析:(1)首先利用SSS定理证明△ABC≌△ADC可得∠BAC=∠DAC,再证明△ABF≌△ADF,可得∠AFD=∠AFB,进而得到∠AFD=∠CFE;

(2)首先证明∠CAD=∠ACD,再根据等角对等边可得AD=CD,再有条件AB=AD,CB=CD可得AB=CB=CD=AD,可得四边形ABCD是菱形;

(3)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,进而得到∠EFD=∠BCD.

解答:(1)证明:∵在△ABC和△ADC中∴△ABC≌△ADC(SSS), ∴∠BAC=∠DAC, ∵在△ABF和△ADF中

∴△ABF≌△ADF, ∴∠AFD=∠AFB, ∵∠AFB=∠AFE, ∴∠AFD=∠CFE;

(2)证明:∵AB∥CD, ∴∠BAC=∠ACD, 又∵∠BAC=∠DAC, ∴∠CAD=∠ACD, ∴AD=CD,

∵AB=AD,CB=CD, ∴AB=CB=CD=AD,

∴四边形ABCD是菱形;

(3)当EB⊥CD时,∠EFD=∠BCD, 理由:∵四边形ABCD为菱形, ∴BC=CD,∠BCF=∠DCF, 在△BCF和△DCF中∴△BCF≌△DCF(SAS), ∴∠CBF=∠CDF, ∵BE⊥CD,

∴∠BEC=∠DEF=90°, ∴∠EFD=∠BCD.

, ,

点评:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.

29.(2013泰安)如图,抛物线y=x+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0)

(1)求该抛物线的解析式.

(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值. (3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.

2

考点:二次函数综合题. 分析:(1)利用待定系数法求出抛物线的解析式;

(2)首先求出△PCE面积的表达式,然后利用二次函数的性质求出其最大值; (3)△OMD为等腰三角形,可能有三种情形,需要分类讨论. 解答:解:(1)把点C(0,﹣4),B(2,0)分别代入y=x+bx+c中,

2

得,

解得

2

∴该抛物线的解析式为y=x+x﹣4.

(2)令y=0,即x+x﹣4=0,解得x1=﹣4,x2=2, ∴A(﹣4,0),S△ABC=AB?OC=12. 设P点坐标为(x,0),则PB=2﹣x. ∵PE∥AC,

∴∠BPE=∠BAC,∠BEP=∠BCA, ∴△PBE∽△ABC, ∴

,即

2

2

化简得:S△PBE=(2﹣x).

S△PCE=S△PCB﹣S△PBE=PB?OC﹣S△PBE=×(2﹣x)×4﹣(2﹣x) =

x2﹣x+

2

搜索更多关于: 初中数学中考泰安试题解析 的文档
初中数学中考泰安试题解析.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c9vdkw09s3u3y3j84vsq02xzhu2kzn0009qb_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top