第一范文网 - 专业文章范例文档资料分享平台

2018年北京市海淀区初三一模数学

来源:用户分享 时间:2025/9/23 7:28:09 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

精品文档

m?2?,? 解不等式组?得0?m?4. ………………3分 2??2?2?mm??y?,当点Q??1(m>0)时, ,2?满足?x??y?x?m 解不等式组??2??m,得m?3. ………………4分

?2??1?mm??y?,∵P,Q两点中恰有一个点的坐标满足?(m>0), x??y?x?m∴m的取值范围是:0?m?3,或m?4. ………………5分

23.解:(1)连接OE,OF.

∵EF⊥AB,AB是eO的直径, ∴∠DOF?∠DOE.

∵∠DOE?2∠A,∠A??,

∴∠DOF?2?. ………………1分 ∵FD为eO的切线, ∴OF⊥FD.

?∴. ∠OFD?90

? ∴∠D+∠DOF?90.

EABOCDF??D?90??2?. ………………2分

(2)图形如图所示.连接OM.

∵AB为eO的直径,

∴O为AB中点, ?AEB?90?. ∵M为BE的中点, ∴OM∥AE,OM=AOCEMBD1AE. ………………3分 2F∵?A?30?,

∴?MOB??A?30?. ∵?DOF?2?A?60? ,

∴?MOF?90?. ………………4分

222 ∴OM+OF?MF.

设eO的半径为r.

。 13欢迎下

精品文档

∵?AEB?90?,?A?30?,

AE ∴

?AB?cos30??3r.

1 ∴OM=23r. ………………5分 ∵FM=7,

222 ∴(23r)+r?(7).

1 解得r=2.(舍去负根)

∴eO的半径为2. ………………6分

24.C ………………1分

80?x?85 85?x?90 8 10 ………………2分 (2)去年的体质健康测试成绩比今年好.(答案不唯一,合理即可) ………………3分

去年较今年低分更少,高分更多,平均分更大.(答案不唯一,合理即可)

………………4分 (3)70. ………………6分

25.(1)如图: ………………2分

(2)当x?1时,y随着x的增大而减小;(答案不唯一) ………………4分 (3)a?1. ………………6分

y

26.解:Q抛物线y?x2?2ax?b的顶点在x轴上, 4b?(?2a)2??0.

4?b?a2. ………………1分

(1)Qa?1,?b?1.

1O1xA 。 14欢迎下

精品文档

?抛物线的解析式为y?x2?2x?1.

① Qm?b?1,?x2?2x?1?1,解得x1?0,x2?2. ………………2分 ②依题意,设平移后的抛物线为y?(x?1)2?k.

Q抛物线的对称轴是x?1,平移后与x轴的两个交点之间的距离是4, ?(3,0)是平移后的抛物线与x轴的一个交点.

?(3?1)2?k?0,即k??4.

?变化过程是:将原抛物线向下平移4个单位. ………………4分

(2)m?16. ………………6分

27..解:

(1)作PF⊥DE交DE于F.

∵PE⊥BO,?AOB?60, ∴?OPE?30.

∴?DPA??OPE?30.

PoooAD∴?EPD?120. ………………1分 ∵DP?PE,DP?PE?6, ∴?PDE?30,PD?PE?3. ∴DF?PD?cos30??ooFOEB33. 2∴DE?2DF?33. ………………3分 (2)当M点在射线OA上且满足OM?23时,DM的值不变,始终为1.理由如下: ME ………………4分 当点P与点M不重合时,延长EP到K使得PK?PD.

。 15欢迎下

精品文档

∵?DPA??OPE,?OPE??KPA,

∴?KPA??DPA. ∴?KPM??DPM.

∵PK?PD,PM是公共边, ∴△KPM≌△DPM.

∴MK?MD. ………………5分 作ML⊥OE于L,MN⊥EK于N. ∵MO?23,?MOL?60,

OoKADPMN∴ML?MO?sin60?3. ………………6分 ∵PE⊥BO,ML⊥OE,MN⊥EK, ∴四边形MNEL为矩形. ∴EN?ML?3.

∵EK?PE?PK?PE?PD?6, ∴EN?NK. ∵MN⊥EK, ∴MK?ME. ∴ME?MK?MD,即

oLEBDM?1. ME当点P与点M重合时,由上过程可知结论成立. ………………7分

28.解(1)①eA的反射点是M,N. ………………1分

②设直线y??x与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为D,E,F,G,过点

D作DH⊥x轴于点H,如图.

32可求得点D的横坐标为?.

22232,,. 222点P是eA的反射点,则eA上存在一点T,使点P关于直线OT的对称点P'在eA上,则OP?OP'.

同理可求得点E,F,G的横坐标分别为?∵1≤OP'≤3,∴1≤OP≤3.

反之,若1≤OP≤3,eA上存在点Q,使得OP?OQ,故线段

PQ的垂直平分线经过原点,且与eA相交.因此点P是eA的反射点.

∴点P的横坐标x的取值范围是?322,或≤x≤?22232. ………………4分 ≤x≤22(2)圆心C的横坐标x的取值范围是?4≤x≤4. ………………7分

。 16欢迎下

搜索更多关于: 2018年北京市海淀区初三一模数学 的文档
2018年北京市海淀区初三一模数学.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c9yzla4ra5d8mqar1rud16ehs64cxmy011yi_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top