求抛物线的解析式;判断△ABC的形状,并
说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标. 23.C分别在x轴,y轴的正半轴上,(8分)如图,在平面直角坐标系中,矩形OABC的顶点A,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
(1)求抛物线的解析式;
(2)猜想△EDB的形状并加以证明;
(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.
24.(10分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈
3,5tan37°≈
3) 4
25.(10分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元? 26.(12分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1. (1)求证:无论实数m取何值,方程总有两个实数根; (2)若方程两个根均为正整数,求负整数m的值.
27.(12分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE. (1)求证:AC平分∠DAB; (2)求证:PC=PF; (3)若tan∠ABC=
4,AB=14,求线段PC的长. 3
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】
A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式
计算即可. 【详解】
解: A、由统计表得:众数为3,不是8,所以此选项不正确;
B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确; C、平均数=D、S2=
1?2?2?2.5?3?8?6?3.5?4?3?3.35,所以此选项不正确;
205.651×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,2020所以此选项不正确; 故选B. 【点睛】
本题考查方差;加权平均数;中位数;众数. 2.D 【解析】 【分析】 【详解】 因为-
1111+=0,所以-的相反数是. 2222故选D. 3.A 【解析】
试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m, ∴这个斜坡的水平距离为:1302?502=10m, ∴这个斜坡的坡度为:50:10=5:1. 故选A.
点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式. 4.B 【解析】
【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.
?4b2?a2?a4b2?a2?a 【解答】用求根公式求得:x1?;x2?22∵?C?90?,BC?a,AC?b, 2a2∴AB?b?,
42a2a4b2?a2?a∴AD?b???.
4222AD的长就是方程的正根. 故选B.
【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键. 5.B 【解析】 【分析】
过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到AF=FH2?AH2=22?22=22,根据平行线分线段成比例定理得到,OH=
11AE=,由相似三角33AMAE1ANAD33??332?5=AM=AF==,形的性质得到FM,求得,根据相似三角形的性质得到FO85FNBF243求得AN=【详解】
过F作FH⊥AD于H,交ED于O,则FH=AB=1. ∵BF=1FC,BC=AD=3, ∴BF=AH=1,FC=HD=1,
∴AF=FH2?AH2=22?22=22, ∵OH∥AE,
362AF=,即可得到结论. 55HODH1?=, AEAD311∴OH=AE=,
3315∴OF=FH﹣OH=1﹣=,
33∴
∵AE∥FO,∴△AME∽△FMO,
AMAE13??332∴FM, FO5=,∴AM=8AF=
543∵AD∥BF,∴△AND∽△FNB, ∴
ANAD3?=, FNBF2
相关推荐: