25.【答案】D
【解析】如图作出可行域,知可行域的顶点
22是A(-2,2)、B(,)及C(-2,-2)
331?x是奇函数,所以图象关于原点对称 x 于是(zA)min??8 6.【答案】D
1221C20C10?C20C1020【解析】P? ?329C307.【答案】B
022011【解析】C6C4?C6C4?C6C4?6?15?24??3
8.【答案】B
【解析】在同一坐标系中作出f1(x)?sinx及g1(x)?cosx在[0,2?]的图象,由图象知,
第 9 页 共 17 页
当x?3?3?22,即a?时,得y1?,y2??,∴MN?y1?y2?2 44229.【答案】B
1c2a2?(a?1)212?1?(1?)【解析】e?()?,因为是减函数,所以当a?1时
aaaa221?1,所以2?e2?5,即2?e?5 a10.【答案】C
【解析】连接AC、BD交于O,连接OE,因OE∥SD.所以∠AEO为所求。设侧棱长与
0?底面边长都等于2,则在⊿AEO中,OE=1,AO=2,AE=22?1?3, 于是cos?AEO?11.【答案】A
【解析】l1:x?y?2?0,k1??1,l2:x?7y?4?0,k2?由题意,l3到l1所成的角等于l2到l3所成的角于是有再将A、B、C、D代入验证得正确答案是A 12.【答案】C
【解析】设两圆的圆心分别为O1、球心为O,公共弦为AB,其中点为E,则OO1EO2O2,为矩形,于是对角线O1O2?OE,而OE?OA2?AE2?22?12?3,∴O1O2?3 13.【答案】 2 【解析】
?1,设底边为l3:y?kx 7(3)2?12?(2)22?3?1?13?3 3k1?kk?k2k?17k?1 ???1?k1k1?k2kk?17?34?7共线=(??2,2??3)则向量?a?b与向量c?(?,??2?4????2 2??3?714.【答案】 2
【解析】y'?aeax,∴切线的斜率k?y'15.【答案】3?22 ?y?x?1?x2?6x?1?0?x1?3?22,【解析】设A(x1,y1)B(x2,y2)由?2?y?4x1a?(?)??1得a?2 ,所以由?ax?02(x1?x2);∴由抛物线的定义知x2?3?22,
FAFB?x1?14?222?2???3?22 x2?14?222?2【高考考点】直线与抛物线的位置关系,抛物线定义的应用
16.充要条件① ;
第 10 页 共 17 页
充要条件② . (写出你认为正确的两个充要条件)
【答案】两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.
三、解答题 17.解:
512(Ⅰ)由cosB??,得sinB?,
131343由cosC?,得sinC?.
5533所以sinA?sin(B?C)?sinBcosC?cosBsinC?. ······························ 5分
6533133(Ⅱ)由S△ABC?得?AB?AC?sinA?,
22233由(Ⅰ)知sinA?,
65故AB?AC?65, ············································································ 8分
AB?sinB20?AB, 又AC?sinC132013AB2?65,AB?. 故132AB?sinA11?.·所以BC?······························································ 10分
sinC2
18.解:
各投保人是否出险互相独立,且出险的概率都是p,记投保的10 000人中出险的人数为
?,
则?~B(104,p).
(Ⅰ)记A表示事件:保险公司为该险种至少支付10 000元赔偿金,则A发生当且仅当
??0, ·························································································· 2分 P(A)?1?P(A)
?1?P(??0)
?1?(1?p)10, 又P(A)?1?0.99910,
故p?0.001. ················································································· 5分
第 11 页 共 17 页
44(Ⅱ)该险种总收入为10000a元,支出是赔偿金总额与成本的和. 支出 1000?0? 50,00(10?0?00100E?0?05,0
盈利 ??1000a0?盈利的期望为 E??1000a0?································ 9分 5,0 ·
由?~B(104,10?3)知,E??10000?10?3,
E??104a?104E??5?104
?104a?104?104?10?3?5?104.
E?≥0?104a?104?10?5?104≥0
?a?10?5≥0 ?a≥15(元).
故每位投保人应交纳的最低保费为15元. ··········································· 12分
19.解法一:
依题设知AB?2,CE?1.
(Ⅰ)连结AC交BD于点F,则BD?AC.
由三垂线定理知,BD?AC·························································· 3分 1. ·
G, 在平面ACA内,连结EF交AC11于点
AAAC?22, 由于1?FCCED1 A1 C1 B1 故Rt△A1AC∽Rt△FCE,?AAC??CFE, 1?CFE与?FCA1互余.
D H E
G F B C 于是AC?EF. 1BED内两条相交直线BD,EF都垂直, AC1与平面
A ?平面BED. ·所以AC···································································· 6分 1(Ⅱ)作GH?DE,垂足为H,连结A1H.由三垂线定理知A1H?DE, 故?A1HG是二面角A1?DE?B的平面角. ············································ 8分
EF?CF2?CE2?3,
第 12 页 共 17 页