※<习题一>
第2章化学工艺基础
2-3何谓化工生产工艺流程?举例说明工艺流程是如何组织的? 答:化工生产工艺流程——将原料转变成化工产品的工艺流程。教材上有2个例子。
2-4何谓循环式工艺流程?它有什么优缺点?
答:循环流程的特点:未反应的反应物从产物中分离出来,再返回反应器。 循环流程的优点:能显著地提高原料利用率,减少系统排放量,降低了原料消耗,也减少了对环境的污染。 循环流程的缺点:循环体系中惰性物质和其他杂质会逐渐积累,对反应速率和产品产率有影响,必须定期排出这些物质以避免积累。同时,大量循环物料的输送会消耗较多动力。
2-5何谓转化率?何谓选择性?对于多反应体系,为什么要同时考虑转化率和选择性两个指标?
答:转化率是指某一反应物参加反应而转化的数量占该反应物起始量的百分率。 选择性是指体系中转化成目的产物的某反应物量与参加所有反应而转化的该反应物总量之比。
在复杂反应体系中,选择性表达了主、副反应进行程度的相对大小,能确切反映原料的利用是否合理。
有副反应的体系,希望在选择性高的前提下转化率尽可能高。但是,通常使转化率提高的反应条件往往会使选择性降低,所以不能单纯追求高转化率或高选择性,而要兼顾两者,使目的产物的收率最高。
2-6催化剂有哪些基本特征?它在化工生产中起到什么作用?在生产中如何正确使用催化剂? 答:三个基本特征:
①催化剂是参与了反应的,但反应终了时,催化剂本身未发生化学性质和数量的变化。
②催化剂只能缩短达到化学平衡的时间,但不能改变平衡。
③催化剂具有明显的选择性,特定的催化剂只能催化特定的反应。 在化工生产中的作用主要体现在以下几方面: ⑴提高反应速率和选择性。⑵改进操作条件。⑶催化剂有助于开发新的反应过程,发展新的化工技术。⑷催化剂在能源开发和消除污染中可发挥重要作用。 在生产中必须正确操作和控制反应参数,防止损害催化剂。
催化剂使用时,必须在反应前对其进行活化,使其转化成具有活性的状态,应该严格按照操作规程进行活化,才能保证催化剂发挥良好的作用。 应严格控制操作条件:①采用结构合理的反应器,使反应温度在催化剂最佳使用温度范围内合理地分布,防止超温;②反应原料中的毒物杂质应该预先加以脱除,使毒物含量低于催化剂耐受值以下;③在有析碳反应的体系中,应采用有利于防止析碳的反应条件,并选用抗积碳性能高的催化剂。 在运输和贮藏中应防止催化剂受污染和破坏;固体催化剂在装填时要防止污染和破裂,装填要均匀,避免“架桥”现象,以防止反应工况恶化;许多催化剂使用后,在停工卸出之前,需要进行钝化处理,以免烧坏催化剂和设备。
2-10假设某天然气全是甲烷,将其燃烧来加热一个管式炉,燃烧后烟道气的摩尔分数组成(干基)为86.4%N2、4.2%O2、9.4%CO2。试计算天然气与空气的摩尔比,并列出物料收支平衡表。
解:设烟道气(干基)的量为100mol。
反应式: CH4 + 2O2 CO2 + 2H2O 分子量: 16 32 44 18
反应转化的量: 9.4 2×9.4 9.4 2×9.4 则产物的量为:N2:86.4mol×28=2419.2 g O2:4.2mol×32=134.4 g CO2:9.4mol×44=413.6 g
H2O :2×9.4mol×18=338.4 g 原料的量为:N2:86.4mol×28=2419.2 g
O2:(4.2+2×9.4)mol×32=736 g
CH4:9.4mol×16=150.4g CH4/空气(摩尔比)=9.4/(86.4+23)×100%=8.6% 列物料衡算表得 组分 输入 输出 mol mol% g Wt% mol mol% g Wt%
N2 86.4 72.7 2419.2 73.2 86.4 72.7 2419.2 73.2 O2 23 19.4 736 22.3 4.2 3.5 134.4 4.1
H2O 18.8 15.8 338.4 10.2 CH4 9.4 7.9 150.4 4.5 CO2 9.4 7.9 413.6 12.5
∑ 118.8 100.0 3305.6 100.0 118.8 99.9 3305.6 100.0
2-13一氧化碳与水蒸气发生的变换反应为CO+H2O CO2+H2,若初始混合原料的摩尔比为H2O/CO=2/1,反应在500℃进行,此温度下反应的平衡常数Kp=P(CO2)?P(H2)/P (H2O)?P(CO)=4.88,求反应后混合物的平衡组成和CO的平衡转化率。
解:设初始原料中 =1mol,则 =2mol,达到平衡时,CO转化了m mol。 由 CO + H2O CO2+ H2 转化量 m m m m
平衡时 =1-m =2-m 生成 = = m 产物总量n =∑ =3 ,平衡时 = = m/3 由4.88= = 得m=0.865 Xco=0.865/1=86.5% 平衡组成: =0.045 =0.378 = =0.288
2-15将纯乙烷进行裂解制取乙烯,已知乙烷的单程转化率为60%,若每100Kg进裂解器的乙烷可获得46.4Kg乙烯,裂解气经分离后,未反应的乙烷大部分循环回裂解器(设循环气只是乙烷)在产物中除乙烯及其他气体外,尚含有4Kg乙烷。求生成乙烯的选择性、乙烷的全程转化率、乙烯的单程收率、乙烯全程收率和全程质量收率。
解:进反应器的乙烷量=100/30=3.333 kmol
产物中乙烷量=4/30=0.133 kmol ,生成乙烯46.4所转化的乙烷量=46.4/28=1.657 kmol
转化的乙烷量=60%×3.333=2.000 kmol , 未转化的乙烷量=3.333-2.000=1.333 kmol
设未反应的乙烷除了有0.133 kmol随产物乙烯带走外,其余全部返回到反应器中,
即1.333-0.133=1.2 kmol
则新鲜乙烷量=3.333-1.2=2.133 kmol ,乙烯选择性=1.657/2.0=82.9% 乙烷的全程转化率=2.0/2.133=93.8% ,乙烯的单程收率=1.657/3.333=49.7% 乙烯全程收率=1.657/2.133=77.7% , 乙烯全程质量收率=46.4/(30×2.133)=72.5%
第3章
3-4提高反应温度的技术关键在何处?应解决什么问题才能最大限度提高裂解温度?
答:裂解反应的技术关键之一是采用高温-短停留时间的工艺技术。提高裂解温度,必须提高炉管管壁温度,而此温度受到炉管材质的限制。因此,研制新型的耐热合金钢是提高反应温度的技术关键。
当炉管材质确定后,可采用缩短管长(实际上是减少管程数)来实现短停留时间操作,才能最大限度提高裂解温度。或者改进辐射盘管的结构,采用单排分支变径管、混排分支变径管、不分支变径管、单程等径管等不同结构的辐射盘管,这些改进措施,采用了缩小管径以增加比表面积来提高传热面积,使壁温下降,提高了盘管的平均传热强度,由此达到高温-短停留时间的操作条件。
3-5为了降低裂解烃分压,通常加入稀释剂,试分析稀释剂加入量确定的原则是什么?
答:工业上常用水蒸气作为稀释剂,加水蒸气量的原则: 水蒸气的加入量随裂解原料不同而异,一般是以能防止结焦,延长操作周期为前提。若加入过量的水蒸气,可使炉管的处理能力下降,增加了炉子热负荷,也增加了水蒸气的冷凝量和急冷剂用量,并造成大量废水。
3-8裂解气出口的急冷操作目的是什么?可采取的方法有几种?你认为哪种好?为什么?若设计一个间接急冷换热器其关键指标是什么?如何评价一个急冷换热器的优劣? 答:从裂解管出来的裂解气是富含烯烃的气体和大量水蒸汽,温度在727-927℃,由于烯烃反应性强,若在高温下长时间停留,仍会继续发生二次反应,引起结焦,并使烯烃收率下降,因此必须使裂解气急冷以终止反应。 采取的方法有两种:直接急冷和间接急冷。
我认为间接急冷比较好。一般情况下,因为直接急冷的急冷剂是用油或水,急冷下来的油水密度相差不大,分离困难,污水量大,不能回收高品位的热能。而间接急冷可回收高品位热能,产生高压水蒸汽作为动力能源以驱动三机等机械(三机:裂解气压缩机、乙烯压缩机、丙烯压缩机),可减少对环境的污染程度。 关键指标是急冷换热器的运转周期应不低于裂解炉的运转周期。为了减少裂解气在急冷换热器内的结焦倾向,使之能正常操作,控制指标: 一是增大裂解气在急冷换热器中的线速度,一般控制裂解气在急冷换热器中的停留时间小于0.04秒;二是必须控制裂解气的出口温度要高于裂解气的露点。 评价急冷换热器的优劣:
急冷换热器的结构必须满足裂解气急冷的特殊条件:急冷换热器管内通过高温裂解气,入口温度约827℃,压力约110KPa(表),要求在极短时间内(0.1S),将裂解气温度降到350-360℃,传热的热强度达400 103KJ/m2?h;管外走高压热水,温度约为320-330℃,压力8-13MPa,由此可知,急冷换热器与一般换热器不同的地方是高热强度,管内外必须同时承受很大的温度差和压力差,同时又要考虑急冷管内的结焦操作操作条件极为苛刻。
3-9裂解气进行预分离的目的和任务是什么?裂解气中要严格控制是杂质有哪些?这些杂质存在的害处?用什么方法除掉这些杂质,这些处理方法的原理是什么?
答:任务:将急冷后的裂解气进一步冷却至常温,并在冷却过程中分馏出裂解气中的重组分(如燃料油、裂解汽油、水分)。
目的:①经预分馏处理,尽可能降低裂解气的温度,从而保证裂解气压缩机的正常运转,并降低裂解气压缩机的功耗。 ②裂解气经预分馏处理,尽可能分馏出裂解气的重组分,减少进入压缩分离系统的负荷。
③在裂解气的预分馏过程中将裂解气中的稀释蒸汽以冷凝水的形式分离回收,用以再发生稀释蒸汽,从而大大减少污水排放量。
④在裂解气的预分馏过程中继续回收裂解气低能位热量。
裂解气中含有H2S、CO2、H2O、C2H2、CO等气体杂质,若不脱除,进入到乙烯、丙烯产品中,影响产品质量,故必须脱除杂质。 ⑴酸性气体的脱除
裂解气中的酸性气体主要是指CO2和H2S,这些酸性气体含量过多时,会带来如下危害:
H2S:能腐蚀设备管道,使干燥用的分子筛寿命缩短,还能使加氢脱炔和甲烷化用的催化剂中毒。
CO2:在深冷操作中会结成干冰,堵塞设备和管道,影响正常生产。 当乙烯、丙烯产品中的酸性气体含量不合格时,可使下游加工装置的聚合过程或催化剂中毒。所以,必须将这些酸性气体脱除,要求将裂解气中的H2S和CO2的摩尔含量分别脱除至1 10-6以下。 裂解气中的酸性气体,一般是用物理吸收法或化学吸收法脱除,应用最广泛的是以NaOH溶液作吸收剂的碱洗法,其次是以乙醇胺溶液作吸收剂的再生法。 ⑵为避免低温系统冻堵,要求将裂解气中水含量(质量分数)降至1 10-6以下。 因为裂解分离是在-100℃以下进行,此时水能结冰,也能与烃生成固体结晶水合物,这些物质结在管壁上,轻则增大动力消耗,重则使设备和管道堵塞,影响正常生产,所以要进行干燥脱水处理。
因为含水量不高(裂解气中饱和水量为600-700 10-6),要求脱水后物料含水量极少,故工业上应用最广泛的是分子筛、活性氧化铝硅胶为干燥剂的固体吸附法。
⑶裂解气中含有少量的炔烃,乙炔富集于C2馏分,甲基乙炔和丙二烯富集于C3馏分,若将它们混于乙烯、丙烯产品用于衍生物的生产过程,特别是用于聚合反应时,影响聚合催化剂寿命,产生不希望的副产品,恶化产品质量,形成不安全因素。
因此,必须脱除,使乙烯产品中的乙炔(摩尔分数)低于5 10-6,丙烯产品中甲基乙炔低于5 10-6,丙二烯低于1 10-5。
溶剂吸收法和催化加氢法。
溶剂吸收法是使用溶剂吸收裂解气中的乙炔以达到净化目的,同时也回收一定量的乙炔。
催化加氢法是将裂解气中乙炔加氢成为乙烯或乙烷,由此达到脱除乙炔的目的。 3-10压缩气的压缩为什么采用多级压缩?确定段数的依据是什么? 答:目前,工业上一般认为经济上合理而技术上可行的裂解气压缩机出口的裂解气压力约为3.7 MPa,而压缩机的入口压力一般为0.14 MPa,提高入口压力虽可节约压缩机功率,但对裂解反应不利,故为节约能量,采用多级压缩。 原因:①节约压缩功耗;②降低出口温度;③实现段间净化分离。
压缩段数应满足工艺要求,必须控制每段压缩机出口的裂解气温度不高于
100℃,以避免发生二烯烃的聚合,由此根据下式计算出每段压缩比,最终确定段数。
3-12裂解气分离流程各有不同,其共同点是什么?
答:①在分离顺序上遵循先易后难的原则,先将不同碳原子数的烃分开,再分同一碳原子数的烯烃和烷烃;②将生产乙烯的乙烯精馏塔和生产丙烯的丙烯精馏塔置于流程最后,可确保这两个主要产品纯度,同时也减少分离损失,提高烯烃收率。
3-15何谓非绝热精馏?何种情况下采用中间冷凝器或中间再沸器?分析其利弊?
答:非绝热精馏——在塔中间对塔内物料进行冷却和加热的过程。
使用条件:对于顶温低于环境温度、底温高于环境温度,且顶底温差较大的精馏塔。
利:可降低分离过程的有效能损失,达到节省能量的目的。对中间再沸器而言,还可减小提馏段塔径。 弊:由于中间冷凝器和中间再沸器的设置,在降低塔顶冷凝器和塔釜再沸器负荷的同时,会导致精馏段回流和提馏段上升蒸气的减少,故为了达到分离要求,就相应增加塔板数,从而增加设备投资。
第5章合成气的生产过程
5-3 以天然气为原料生产合成气的过程有哪些主要反应?从热力学角度考虑,对反应有哪些要求?从动力学角度考虑又有哪些要求? 答:主反应:CH4+H2O CO+3H2 CH4+2H2O CO2+4H2 (5-22) CO+H2O CO2+H2 (5-23) 副反应:主要是析碳反应
CH4 C+2H2 K3 (5-24) 歧化:2CO C+CO2 K4 (5-25)
还原(消碳):CO+H2 C+H2O K5 (5-26)
从化学反应平衡(热力学角度)考虑:甲烷水蒸气转化过程条件是适当的高温、稍低的压力、高水碳比。
从动力学角度考虑:高温、一定的压力、适当的水碳比。
(1)温度的影响:k随温度的升高而升高,反应速率增大。(2)压力的影响:总压增高,则各组分分压提高,反应速率提高,同时使体积减少。(3)组成的
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新人文社科化学工艺学答案 全文阅读和word下载服务。
相关推荐: