14、由甲、乙两个工程队修一段长2136米的公路,先由甲队以每天30米的速度修了若干天,然后再由乙队接着修,每天修42米,两队共用60天修完这段路。问:两队各修了多少天?
15、买单价为2元、3元、5元的图片65张,共花去240元,已知单价5元的图片张数是2元张数的2倍,三种图片各买了多少张?
16、公猴、母猴和小猴共38只,每天共摘桃子266个,已知一只公猴每天摘桃10个,一只母猴每天摘桃8个,一只小猴每天摘桃5个,又知公猴比母猴少4只,问:小猴有几只?
17、传说九头鸟有九头一尾,九尾鸟有九尾一头.现有头580个,有尾900条,问两种鸟各有多少只?
第十讲:置换问题
专题分析:
置换问题主要研究把数量关系的两种数量转换成一种数量,从而帮助我们找到解题方法的一类典型的应用题。“鸡兔同笼”问题就是一种比较典型的置换问题,解答置换问题一般用转换和假设这两种数学思维方法。 解答置换问题应注意下面两点:
1、根据数量关系把两种数量转换成一种数量,从而找出解题方法。 2、把两种数量假设为一种数量,从而找出解题方法。 练习一:
1、20千克苹果与30千克梨共计132元,2千克苹果的价钱与2.5千克梨的价钱相等。求苹果和梨的单价。
思路:2千克苹果的价钱与2.5千克梨的价钱相等,则20千克苹果相当于25千克梨,这样就把两种数量转化为一种数量了,先计算梨的单价是:132÷(25+30)=2.4(元),其余的计算就容易了。
2、6只鸡和8只羊共重78千克,已知5只鸡的重量和2只羊的重量相等。求每只鸡和每只羊的重量。
3、商店里有甲种钢笔和乙种圆珠笔,已知2支钢笔的价钱与15支圆珠笔的价钱相等。老师买了4支钢笔和6支圆珠笔共付了72元。求钢笔和圆珠笔的单价。
4、用两种汽车运货,如果2辆大汽车的载重量正好等于3辆小汽车的载重量,且5辆大汽车和6辆小汽车一次共运54吨货。求每辆大汽车比小汽车多装几吨货?
练习二:
1、中华学校买来史地书、科技书和文艺书共456本。其中科技书是史地书的的1.2倍,文艺书比科技书多31本。三种书各买了多少本?
思路:先用史地书代换科技书,科技书加上31本又是文艺书,这样三种书都可表示成史地书,则史地书为:(456-31)÷(1+1.2+1.2)=125(本)。其他书的计算就简单了。
2、某菜站运来西红柿和黄瓜共重1660千克,已知运来的西红柿的重量比黄瓜重量的3倍少60千克,菜站运来的西红柿和黄瓜各多少千克?
3、一条公路长72千米,由甲乙丙三个修路队共同修完。甲队修的千米数是乙队的2倍,丙队修的千米数比甲队少3千米。甲乙丙三队各修了多少千米?
4、糖果店卖的水果糖、奶糖和巧克力糖有以下关系:买1.5千克奶糖的钱和买2.4千克的水果糖的钱相等;买2千克巧克力糖的钱和买3千克奶糖的钱相等。如果用买4.5千克巧克力糖的钱,可买水果糖多少千克?
练习三:
1、一件工作,甲做5小时以后由乙来做,3小时可以完成;乙做9小时以后由甲来做,也是3小时可以完成。那么甲做1小时以后由乙来做几小时可以完成?
思路:假设甲乙都做6小时后,甲还要做2小时,乙还要做6小时。以后的计算相信你可以解决了。
2、小明去买同一种笔和同一种橡皮,所带的钱能买8支笔和4块橡皮,或买6支笔和12块橡皮。结果他用这些钱全部买了笔,请问他能买几支?
3、一辆卡车最多能载40袋大米和40袋面粉,或者载10袋大米和100袋面粉。现在卡车上已载有20袋大米,最多还能载多少袋面粉?
4、买2条床单和3条毛巾只用210元,买同样的3条床单和2条毛巾只用280元。买一条床单和毛巾各需多少元?
练习四:
1、5辆玩具汽车与3架飞机玩具的价钱相等,每架飞机玩具比汽车玩具贵8元。这两种玩具的单价各是多少元?
思路:因为每架飞机玩具比汽车玩具贵8元,三架飞机玩具比三辆汽车玩具贵24元,则两辆汽车玩具是24元,以后的计算相信你会了。
2、2支钢笔的价钱和3支圆珠笔的价钱相等,一支圆珠笔比一支钢笔便宜6元钱,两种笔的单价各是多少元?
3、师徒二人加工同样多的零件,师傅用了3小时,徒弟用了5小时,已知师傅每小时比徒弟多做6个零件。问师徒二人各做了多少个零件?
4、汽车从甲地开往乙地,行完全程用了3小时,返回时用了4小时,已知这辆汽车去时比返回时每小时快12千米。甲乙两地相距多少千米?
练习五:
1、慧月和慧琴上街买铅笔和练习本。慧月买6支铅笔和7本练习本,共用去2.32元;慧琴买了同样的3支铅笔和9本练习本,共用去2.37元。问铅笔和练习本的单价各是多少元?
思路:慧琴买了同样的3支铅笔和9本练习本,共用去2.37元,如果慧琴买了同样的6支铅笔和18本练习本,共用去4.74元。和慧月一比较就知道11本练习本的价钱是2.42元。以后的计算相信你会了。
2、甲乙两人加工某种零件,甲做15小时,乙做8小时,共加工1600个,甲做10小时,乙做7小时共加工1100个。甲乙两人每小时各加工多少个零件?
3、2份点心和1杯饮料共26元;1份点心和3杯饮料共18元。1份点心和1杯饮料各多少元?
4、加工10件同样的上衣和4条同样的裤子需用布19.4米,加工6件同样的上衣和5条同样的裤子需用布14.5米,加工一件上衣和一条裤子各需用布多少米?
第十一讲:作图法解题
专题分析:
用作图法把应用题的数量关系表示出来,使题意形象具体,一目了然,以便较快地找到解题的途径,它对解答条件隐蔽、复杂疑难的应用题,能起化难为易的作用。 在解答已知一个数或者几个数的和差、差倍以及相互之间的关系、求其中一个数或者几倍数问题等应用题时,我们可以抓住题中给出的数量关系,借助线段图进行分析,从而列出算式。 练习一:
1、五(一)班的男生人数和女生人数同样多。抽去18名男生和26名女生参加合唱团,剩下的男生人数是女生的3倍。五(一)班原有男女生多少人?
思路:先作图:由于男生人数和女生人数同样多,抽去18名男生和26名女生参加合唱团,说明男生比女生少抽8名,剩下的男生人数是女生的3倍,这8名正好是剩下男女生相差的2倍。这样很容易计算剩下的女生是4人。则原有女生30名。
2、两根电线一样长,第一根剪去50厘米,第二根剪去180厘米后,剩下部分,第一根是第二根长度的3倍。这两根电线原来共长多少厘米?
3、甲乙两筐水果个数一样多,从第一筐中取出31个,第二筐中取出19个后,第二筐剩下的个数是第一筐的4倍。原来两筐水果各有多少个?
4、哥哥现存的钱是弟弟的5倍,如果哥哥再存20元,弟弟再存100元。二人的存款正好相等。哥哥原来存有多少钱? 练习二:
1、两根电线共长59米,如果第一根剪去3米,第一根电线的长度就是第二根的3倍。
求原来两根电线各长多少米?
思路:如果把第一根剪去3米,则总长是56米,这56米正好是原来第二根电线的4倍。这样计算就十分容易了。
2、甲乙两筐苹果共重83千克,如果从甲筐取出3千克后,甲筐苹果的重量就是乙筐的4倍。甲乙两筐苹果原来各重多少千克?
3、学校图书室共有图书和故事书250本,又买来50本科技书后,科技书的本数是故事书的2倍,学校图书馆原来各有科技书和故事书多少本?
4、参加奥数竞赛集训的男生和女生共有21人,如果女生减少5名,男生人数就是女生的3倍,参加奥数竞赛集训的男女生各有多少人?
练习三:
1、甲乙丙丁四个小组的同学共植树45棵,如果甲组多植2棵,乙组少植2棵,丙组植的棵数扩大2倍丁组植树减少一半,那么四个组植的树正好相同。原来四个小组各植树多少棵?
思路:我们把现在的丙组看成1份,丁组则为4份,由于甲乙两组一组多2棵,一组少2棵,故总数不变。这样现在的丙组为:45÷(1+4+2+2)=5(棵)其他组的计算就简单了。
2、甲乙丙丁四个数的和是100,甲数加上4,乙数减去4,丙数乘以4,丁数除以4,四个数正好相等,求这四个数。
3、甲乙丙三人分113个苹果,如果把甲分得个数减去5,乙分得的个数减去24,丙把分得的个数送给别人一半后,三人的苹果个数相同。三人原来分得苹果各多少个?
4、甲乙丙丁一共做370个零件,如果把甲做的个数加10,乙做的个数减少20,丙做的个数乘以2,丁做的个数除以2,四人做的零件就相同。求乙实际做了多少个?
练习四:
1、五(一)班全体同学做数学竞赛题,第一次及格人数是不及格人数的3倍多4人。第二次及格人数增加5人。使及格的人数是不及格人数的6倍。五(一)班有多少人? 思路: 先作图,第二次及格人数增加5人,也就是不及格的减少5人,因为第一次及格人数是不及格人数的3倍多4人。那么及格人数应减少15人,这样及格与不及格相差24人,这24人对应着(6-3)倍。第二次不及格的人数就是8人。其他问题就容易计算了。
2、有两筐苹果,甲筐水果的个数是乙筐的3倍,如果从乙筐中拿5个放进甲筐,这时甲筐的水果恰好是乙筐的5倍。原来两筐水果各有多少个水果?
3、某车间有两个小组,A组的人数不B组人数的2倍多2人。如果从A组中抽10人去A组,则A组人数是B组的4倍。原来两组各有多少人?
4、五(一)班上学期体育达标的人数比未达标人数的5倍多2人,今年又有2位同学达标,这样达标人数正好是未达标人数的7倍。这个班共有学生多少人?
练习五:
1、用绳子测井深,把绳子三折来量,井外余16分米,把绳子四折来量,井外余4分米,求井深和绳长。
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高中教育五年级暑假奥数题11 (6)全文阅读和word下载服务。
相关推荐: