We work out finite-dimensional integral formulae for the scalar product of genus one states of the group G Chern-Simons theory with insertions of Wilson lines. Assuming convergence of the integrals, we show that unitarity of the elliptic KnizhnikZamolodchi
where h j n h n j,= ( 1;1;:::; 1;K; 2;1;::::::; N;KN ) P quence of K= n Kn simple roots satisfying1
( 1;:::; K ) is a se(20)
X
K
s=11
s
=
X
N
n=1
n;
y= (y1;1;:::; y1;K; y2;1;::::::; yN;KN ) (y1;:::; yK ) is a sequence of K points in T and the kernels Fp; are composed of the Green functions of twisted@ FK; (; u; z; y)=Y
n
Phu;
n;1+:::+ n;Kn i (zn
? yn;1 ) Phu;
Phu;
n;2+:::+ n;Kn i (yn;1 n;Kn i (yn;Kn?1
? yn;Kn ): (21)
? yn;2)
" . . ." contains the terms that will drop under the renormalization of the -integral.3.2 Functional integration
The above use of eq.(15) to express the 0 dependence of the insertions reduces the 0 integral to the formZ Y
K
s=1
+2 _ X (@z 0 s )(ys )(@z 0 s )(vs ) exp?i(k2 h ) s e?h u; i@ 0@ 0]
Y
= ( k+2h_ )K
X
K Y
2SK s=1
>0 e h u (ys ); si s; (s)
>0; zY
d2(e?h
u; i=2
0)
(ys? v (s) )
>0
det(@ y@ )?1 (22)
with running over the permutations of K points and with@ determinants are well knownY2
e?h u; i=2@ e h u; i=2 . The
>0
Y det(@ y@ )?1= const: e? r=6 j (u)j?2 j1? q l j2r
1
_ _ exp ih sh@;@ i? 2h ju? uj2]: 42
l=1
After the 0 -integration and an easy combinatorial manipulation, see 10], trading the sum over root sequences into sums over permutations (two 's satisfying eq. (20) di er necessarily only by a permutation), the scalar product formula (11) becomes
k k2= const: e? r
Z 1 K N=6 Y j1? q l j2r Y e?h u (zn ); n i Y e h u (ys ); si s=1 n=1 l=1 r Y i exp? 4 sh@;@ i+ 2 2 ju? uj2] ( (0)) D j j (u)j2 j=1 K 2 Y X X FK; (; u; z; y) h j n (e( )n;1 e( )n;Kn )(n) (u) i d2r u d2ys s=1 K 2SK2
(23)
where
k+ h_ and is a xed sequence of K simple roots satisfying (2
0).8
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新人文社科Unitarity of the Knizhnik-Zamolodchikov-Bernard connection and the Bethe Ansatz for the ell(12)全文阅读和word下载服务。
相关推荐: