Proceeding of the IEEE
International Conference on Information and Automation Shenzhen, China June 2011
AbnormalCrowdBehaviorDetection
BasedontheEnergyModel
GuogangXiong ,XinyuWu ,Yen-LunChen ,andYongshengOu
InstitutesofAdvancedTechnologyChineseAcademyofSciencesShenzhen,GuangdongProvince,China
TheChineseUniversityofHongkong,HongKong,China
{gg.xiong,xy.wu,yl.chen,ys.ou}@
Abstract—Inthispaper,wepresentanovelmethodtodetecttwotypicalabnormalactivities:pedestraingatheringandrunning.Themethodisbasedonthepotentialenergyandkineticenergy.Reliableestimationofcrowddensityandcrowddistributionare rstlyintroducedintothedetectionofanomalies.Estimationofcrowddensityisobtainedfromtheimagepotentialenergymodel.Bybuildingtheforegroundhistogramonthe and axisrespectively,theprobabilitydistributionofthehistogramcanbeobtained,andthenwede netheCrowdDistributionIndex( )torepresentthedispersion.TheCrowdDistributionIndex( )isusedtodetectpedestrainsgathering.Thekineticenergyisdeterminedbycomputationofoptical owandCrowdDistributionIndex,andthenusedtodetectpeoplerunning.Thedetectionforabnormalactivitiesisbasedonthethresholdanalysis.Withouttrainingdata,themodelcanrobustlydetectabnormalbehaviorsinlowandmediumcrowddensitywithlowcomputationload.IndexTerms—Intelligentsurveillance,Imagepotentialenergymodel,Abnormalevents,Crowdanalysis.
Shenzhen
objects,suchasbelongingdropping,loiteringandcrossingoverthefence.Asonlyafewpeoplemovinginthescenes,theseapproachescanimplementdetectingandsegmentingeasily.However,whentheenvironmentbecomescompli-cated,asshowninFig.1,thesemethodswillbesubjectedtosevereocclusionswhichmakesthetracking,detectingandsegmentingdif culttoimplement.Basedontheabovefactors,therearefewattemptstomodellargergroupsofpeoplewhichshouldbepaidmoreattention
to.
I.INTRODUCTION
Thedecreasingcostsofvideosurveillanceequipmentshaveresultedinlargevolumesofvideodata.However,thisexcessiveamountofinformationhasnotbeenmetwithenoughhumanoperators[1].Ontheotherhand,techniquesonimageandvideoanalysisdeveloprapidly.Duetotheabovetwofactors,crowdanalysisincomputervisionhasbecomeapopularresearchtopicinnumerouscountries.Modelsabletodetectabnormaleventswithinvideostreamscanservearangeofapplications,suchassecurityautomationsysteminpublic,coalminesurveillanceandintelligentanalysisapplication.Inanysuchcase,automaticalanomalydetectionwouldsigni cantlyimprovetheef ciencyofvideoanalysis,savingvaluablehumanattentionforonlythemostsalientcontent[2].
Mosttraditionalapproachesonanomalydetectionalwaysaimatspeci canomaliesofsinglepersonorafewmoving
workdescribedinthispaperispartiallysupportedbytheNature
ScienceFoundationofChina(61005012),byShenzhen/HongkongInnova-tionCircleProject(ZYB200907070024A)andbythegrantfromShenzhenpublicscienceandtechnology.TheauthorswouldliketothankMr.RuiqingFu,Mr.LeiZhang,Mr.KeXu,andMr.LongHanfortheirvaluablecontributiontothisproject.
This
(a)People
gathering
Fig.1.
(b)Peoplerunning
Typicalabnormalscenes.
Thispaperaimstopresentaneffectivemodeltodetecttwokindsofanomalieswhicharethemostprimaryandprevalentinpublicscenes.Generallyspeaking,pedestriangatheringandrunningisanemergencysignalindicatingsomeabnormaleventshappening,surveillancesystemsshoulddetectthemautomaticallyintime.Therestofthispaperisorganizedasfollows.AsummaryoftherelatedworkisgiveninSection2.OursystemdiagramisdescribedinSection3.Wepresenttheimagepotentialenergymodeltoestimatethecrowddensityinsection4.InSection5,wede netheCrowdDistributionIndex.Modi edde nitionofkineticenergyisgiveninSection6.InSection7,wepresenttheexperimentalresultsondifferentvideoclips.Inthelastsection,wesummarizetheapproachandpresentsomecluesforfutureresearchwork.
II.RELATEDWORK
Abnormalcrowdbehaviordetectioncanbedividedintotwobroadfamiliesofapproachesnamedmachine-learning-basedmethodsandthreshold-basedmethods.
978-1-61284-4577-0270-9/11/$26.00 ©2011 IEEE
495
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新初中教育Abnormal Crowd Behavior Detection Based on the Energy Model全文阅读和word下载服务。
相关推荐: