第一范文网 - 专业文章范例文档资料分享平台

Abnormal Crowd Behavior Detection Based on the Energy Model

来源:用户分享 时间:2021-06-02 本文由旧人不归 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

Proceeding of the IEEE

International Conference on Information and Automation Shenzhen, China June 2011

AbnormalCrowdBehaviorDetection

BasedontheEnergyModel

GuogangXiong ,XinyuWu ,Yen-LunChen ,andYongshengOu

InstitutesofAdvancedTechnologyChineseAcademyofSciencesShenzhen,GuangdongProvince,China

TheChineseUniversityofHongkong,HongKong,China

{gg.xiong,xy.wu,yl.chen,ys.ou}@

Abstract—Inthispaper,wepresentanovelmethodtodetecttwotypicalabnormalactivities:pedestraingatheringandrunning.Themethodisbasedonthepotentialenergyandkineticenergy.Reliableestimationofcrowddensityandcrowddistributionare rstlyintroducedintothedetectionofanomalies.Estimationofcrowddensityisobtainedfromtheimagepotentialenergymodel.Bybuildingtheforegroundhistogramonthe and axisrespectively,theprobabilitydistributionofthehistogramcanbeobtained,andthenwede netheCrowdDistributionIndex( )torepresentthedispersion.TheCrowdDistributionIndex( )isusedtodetectpedestrainsgathering.Thekineticenergyisdeterminedbycomputationofoptical owandCrowdDistributionIndex,andthenusedtodetectpeoplerunning.Thedetectionforabnormalactivitiesisbasedonthethresholdanalysis.Withouttrainingdata,themodelcanrobustlydetectabnormalbehaviorsinlowandmediumcrowddensitywithlowcomputationload.IndexTerms—Intelligentsurveillance,Imagepotentialenergymodel,Abnormalevents,Crowdanalysis.

Shenzhen

objects,suchasbelongingdropping,loiteringandcrossingoverthefence.Asonlyafewpeoplemovinginthescenes,theseapproachescanimplementdetectingandsegmentingeasily.However,whentheenvironmentbecomescompli-cated,asshowninFig.1,thesemethodswillbesubjectedtosevereocclusionswhichmakesthetracking,detectingandsegmentingdif culttoimplement.Basedontheabovefactors,therearefewattemptstomodellargergroupsofpeoplewhichshouldbepaidmoreattention

to.

I.INTRODUCTION

Thedecreasingcostsofvideosurveillanceequipmentshaveresultedinlargevolumesofvideodata.However,thisexcessiveamountofinformationhasnotbeenmetwithenoughhumanoperators[1].Ontheotherhand,techniquesonimageandvideoanalysisdeveloprapidly.Duetotheabovetwofactors,crowdanalysisincomputervisionhasbecomeapopularresearchtopicinnumerouscountries.Modelsabletodetectabnormaleventswithinvideostreamscanservearangeofapplications,suchassecurityautomationsysteminpublic,coalminesurveillanceandintelligentanalysisapplication.Inanysuchcase,automaticalanomalydetectionwouldsigni cantlyimprovetheef ciencyofvideoanalysis,savingvaluablehumanattentionforonlythemostsalientcontent[2].

Mosttraditionalapproachesonanomalydetectionalwaysaimatspeci canomaliesofsinglepersonorafewmoving

workdescribedinthispaperispartiallysupportedbytheNature

ScienceFoundationofChina(61005012),byShenzhen/HongkongInnova-tionCircleProject(ZYB200907070024A)andbythegrantfromShenzhenpublicscienceandtechnology.TheauthorswouldliketothankMr.RuiqingFu,Mr.LeiZhang,Mr.KeXu,andMr.LongHanfortheirvaluablecontributiontothisproject.

This

(a)People

gathering

Fig.1.

(b)Peoplerunning

Typicalabnormalscenes.

Thispaperaimstopresentaneffectivemodeltodetecttwokindsofanomalieswhicharethemostprimaryandprevalentinpublicscenes.Generallyspeaking,pedestriangatheringandrunningisanemergencysignalindicatingsomeabnormaleventshappening,surveillancesystemsshoulddetectthemautomaticallyintime.Therestofthispaperisorganizedasfollows.AsummaryoftherelatedworkisgiveninSection2.OursystemdiagramisdescribedinSection3.Wepresenttheimagepotentialenergymodeltoestimatethecrowddensityinsection4.InSection5,wede netheCrowdDistributionIndex.Modi edde nitionofkineticenergyisgiveninSection6.InSection7,wepresenttheexperimentalresultsondifferentvideoclips.Inthelastsection,wesummarizetheapproachandpresentsomecluesforfutureresearchwork.

II.RELATEDWORK

Abnormalcrowdbehaviordetectioncanbedividedintotwobroadfamiliesofapproachesnamedmachine-learning-basedmethodsandthreshold-basedmethods.

978-1-61284-4577-0270-9/11/$26.00 ©2011 IEEE

495

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新初中教育Abnormal Crowd Behavior Detection Based on the Energy Model全文阅读和word下载服务。

Abnormal Crowd Behavior Detection Based on the Energy Model.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1204641.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top