【分析】根据圆锥侧面积恰好等于底面积的3倍可得圆锥的母线长=3×底面半径,根据圆锥的侧面展开图的弧长等于圆锥的底面周长,可得圆锥侧面展开图所对应的扇形圆心角度数.
【解答】解:设母线长为R,底面半径为r,
∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR, ∵侧面积是底面积的3倍, ∴3πr2=πrR, ∴R=3r,
设圆心角为n,有∴n=120°.
第12页(共33页)
=πR,
故选C.
【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.
9.(3分)(2017?东营)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=
,则△ABC移动的距离是( )
A. B. C. D.﹣
【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:段的差求BE的长.
【解答】解:∵△ABC沿BC边平移到△DEF的位置, ∴AB∥DE, ∴△ABC∽△HEC, ∴
=(
)2=, ,
,推出EC的长,利用线
∴EC:BC=1:∵BC=∴EC=
, ,
∴BE=BC﹣EC=故选:D.
﹣.
【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在于证△ABC与阴影部分为相似三角形.
第13页(共33页)
10.(3分)(2017?东营)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:
①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC 其中正确的是( )
A.①②③④ B.②③ C.①②④ D.①③④
【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形, ∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°, 在正方形ABCD中,
∵AB=BC=CD,∠A=∠ADC=∠BCD=90° ∴∠ABE=∠DCF=30°, ∴BE=2AE;故①正确; ∵PC=CD,∠PCD=30°, ∴∠PDC=75°, ∴∠FDP=15°, ∵∠DBA=45°, ∴∠PBD=15°, ∴∠FDP=∠PBD, ∵∠DFP=∠BPC=60°,
∴△DFP∽△BPH;故②正确; ∵∠FDP=∠PBD=15°,∠ADB=45°, ∴∠PDB=30°,而∠DFP=60°,
第14页(共33页)
∴∠PFD≠∠PDB,
∴△PFD与△PDB不会相似;故③错误; ∵∠PDH=∠PCD=30°,∠DPH=∠DPC, ∴△DPH∽△CPD, ∴
,
∴DP2=PH?PC,故④正确; 故选C.
【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.
二、填空题(本大题共8小题,共28分)
11.(3分)(2017?东营)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108 . 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:1.2亿用科学记数法表示为1.2×108. 故答案为:1.2×108.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
12.(3分)(2017?东营)分解因式:﹣2x2y+16xy﹣32y= ﹣2y(x﹣4)2 . 【分析】根据提取公因式以及完全平方公式即可求出答案. 【解答】解:原式=﹣2y(x2﹣8x+16) =﹣2y(x﹣4)2
故答案为:﹣2y(x﹣4)2
【点评】本题考查因式分解,解题的关键是熟练运用因式分解法,本题属于基础
第15页(共33页)
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新初中教育初中九年级数学中考专题复习模拟检测试卷WORD(含答案) (115)(3)全文阅读和word下载服务。
相关推荐: