初中数学中考必考知识点之难点归纳
难点一:二次函数相关知识及精华小结论
1.定义:一般地,如果y?ax2?bx?c(a,b,c是常数,a?0),那么y叫做x的二次函数. 2.抛物线的三要素:开口方向、对称轴、顶点.
①a的符号决定抛物线的开口方向:当a?0时,开口向上;当a?0时,开口向下;
a相等,抛物线的开口大小、形状相同.
②平行于y轴(或重合)的直线记作x?h.特别地,y轴记作直线x?0. 几种特殊的二次函数的图像特征如下: 函数解析式 开口方向 当a?0时 开口向上 当a?0时 开口向下 对称轴 x?0(y轴) 顶点坐标 (0,0) (0, k) (h,0) (h,k) b4ac?b2(?,) 2a4ay?ax2 y?ax?k 2y?a?x?h? 2x?0(y轴) x?h x?h y?a?x?h??k 2y?ax2?bx?c x??b 2a4.求抛物线的顶点、对称轴的方法
b4ac?b2b?4ac?b2?2(?,) (1)公式法:y?ax?bx?c?a?x???,∴顶点是,对称轴
2a4a2a4a??2是直线x??b. 2a2 (2)配方法:运用配方的方法,将抛物线的解析式化为y?a?x?h??k的形式,得到顶点
为(h,k),对称轴是直线x?h.
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的
交点是顶点。
x? 若已知抛物线上两点(x1,y)、(及y值相同),则对称轴方程可以表示为:(x2,y)x1?x2 29.抛物线y?ax2?bx?c中,a,b,c的作用
(1)a决定开口方向及开口大小,这与y?ax2中的a完全一样.
(2)b和a共同决定抛物线对称轴的位置.由于抛物线y?ax2?bx?c的对称轴是直线
bb
x??,故:①b?0时,对称轴为y轴;②?0(即a、b同号)时,对称轴在y轴
2aa
b左侧;③?0(即a、b异号)时,对称轴在y轴右侧.
a (3)c的大小决定抛物线y?ax2?bx?c与y轴交点的位置.
当x?0时,y?c,∴抛物线y?ax2?bx?c与y轴有且只有一个交点(0,c): ①c?0,抛物线经过原点; ②c?0,与y轴交于正半轴;③c?0,与y轴交于负半轴.
b 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则 ?0.
a11.用待定系数法求二次函数的解析式
(1)一般式:y?ax2?bx?c.已知图像上三点或三对x、y的值,通常选择一般式. (2)顶点式:y?a?x?h??k.已知图像的顶点或对称轴,通常选择顶点式.
2 (3)交点式:已知图像与x轴的交点坐标x1、x2,通常选用交点式:y?a?x?x1??x?x2?. 12.直线与抛物线的交点
(1)y轴与抛物线y?ax2?bx?c得交点为(0, c). (2)抛物线与x轴的交点
二次函数y?ax2?bx?c的图像与x轴的两个交点的横坐标x1、x2,是对应一元二次方程
ax2?bx?c?0的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判
别式判定:
①有两个交点?(??0)?抛物线与x轴相交;
②有一个交点(顶点在x轴上)?(??0)?抛物线与x轴相切; ③没有交点?(??0)?抛物线与x轴相离. (3)平行于x轴的直线与抛物线的交点
同(2)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相
等,设纵坐
标为k,则横坐标是ax2?bx?c?k的两个实数根.
(4)一次函数y?kx?n?k?0?的图像l与二次函数y?ax2?bx?c?a?0?的图像G的交点,
由方程组
y?kx?ny?ax?bx?c2的解的数目来确定:①方程组有两组不同的解时?l与G有两个交点; ②方
程组只有一组解时?l与G只有一个交点;③方程组无解时?l与G没有交点.
(5)抛物线与x轴两交点之间的距离:若抛物线y?ax2?bx?c与x轴两交点为
A?x1,0?,B?x2,0?,则AB?x1?x2
1、多边形内角和公式:n边形的内角和等于(n-2)180o(n≥3,n是正整数),外角和等于360o2、平行线分线段成比例定理:
(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。 如图:a∥b∥c,直线l1与l2分别与直线a、b、c相交与点A、B、C
ABDEABDEBCEF?,?,? BCEFACDFACDF(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
如图:△ABC中,DE∥BC,DE与AB、AC相交与点D、E,则有:
D、E、F,则有
l1ABl2DEAEADabDE
ADAEADAEDEDBEC?,??,? DBECABACBCABAC
C*3、直角三角形中的射影定理:如图:Rt△ABC中,∠ACB=90o,CD⊥AB于D,则有: (1)CD2?AD?BD(2)AC2?AD?AB(3)BC2?BD?AB 4、圆的有关性质:
ADB(1)垂径定理:如果一条直线具备以下五个性质中的任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径.(2)两条平行弦所夹的弧相等.(3)圆心角的度数等于它所对的弧的度数.(4)一条弧所对的圆周角等于它所对的圆心角的一半.(5)圆周角等于它所对的弧的度数的一半.(6)同弧或等弧所对的圆周角相等.(7)在同圆或等圆中,相等的圆周角所对的弧相等.(8)90o的圆周角所对的弦是直径,反之,直径所对的圆周角是90o,直径是最长的弦.(9)圆内接四边形的对角互补.
5、三角形的内心与外心:三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角角平分线的交点.三角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点.
常见结论:(1)Rt△ABC的三条边分别为:a、b、(cc为斜边),则它的内切圆的半径r?a?b?c; 21(2)△ABC的周长为l,面积为S,其内切圆的半径为r,则S?lr
2*6、弦切角定理及其推论:
(1)弦切角:顶点在圆上,并且一边和圆相交,另一边和圆相切的角叫做弦切角。如图:∠PAC为弦切角。
(2)弦切角定理:弦切角度数等于它所夹的弧的度数的一半。
B
11A 如果AC是⊙O的弦,PA是⊙O的切线,A为切点,则?PAC?AC??AOC22O 推论:弦切角等于所夹弧所对的圆周角(作用证明角相等)
如果AC是⊙O的弦,PA是⊙O的切线,A为切点,则?PAC??ABC C P
*7、相交弦定理、割线定理、切割线定理:
相交弦定理:圆内的两条弦相交,被交点分成的两条线段长的积相等。 如图①,即:PA·PB = PC·PD
割线定理 :从圆外一点引圆的两条割线,这点到每条割线与圆交点的两条线段长的积相等。 如图②,即:PA·PB = PC·PD
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新初中教育初中数学中考必考知识点之难点归纳总结全文阅读和word下载服务。
相关推荐: