第一范文网 - 专业文章范例文档资料分享平台

第2章 多元回归分析

来源:用户分享 时间:2021-06-02 本文由峥嵘岁月 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

计量经济学课程课件 赵西亮

第二章 多元回归分析:估计y = β0 + β1x1 + β2x2 + . . . βkxk + u

计量经济学课程课件 赵西亮

Multiple Regression Analysisy = β0 + β1x1 + β2x2 + . . . βkxk + u 1. Estimation

计量经济学课程课件 赵西亮

Parallels with Simple Regressiony = β0 + β1x1 + β2x2 + . . . βkxk + u

β0 is still the intercept β1 to βk all called slope parametersu is still the error term (or disturbance) Still need to make a zero conditional mean assumption, so now assume that E(u|x1,x2, …,xk) = 0 Still minimizing the sum of squared residuals, so have k+1 first order conditions

计量经济学课程课件 赵西亮

Obtaining OLS EstimatesIn the general case with k independent variables, from the first order condition, we can get k + 1 we seek estimates β + βunknowns the equition linear equations in k0 ,11 ,K , β k in β 0 , β1 ,K , β k : n + y = β 0 +β1 x1 L + β k xk ∑ yi β0 minimize theβsum of squared residuals: therefore, β1 xi1 L k xik = 0 i =n 1 2 n β x L β x ∑xi1yi yi β0β0 1βi11xi1 L kβ kikxik = 0 ∑

∑ x ( y βMi =1 n i2 i

i =1 i =1 n

( ((

) ))

0

β1 xi1 L β k xik = 0

)

∑ x ( y βi =1 ik i

β1 xi1 L β k xik = 0. 04

)

计量经济学课程课件 赵西亮

Obtaining OLS Estimates, cont. y = β 0 + β 1 x1 + β 2 x 2 L + β k x kThe above estimated equation is called the OLS regression line or the sample regression function (SRF) the above equation is the estimated equation, is not the really equation. The really equation is population regression line which we don’t know. We only estimate it. So, using a different sample, OLS slope estimates OLS intercept estimate we can get another different estimated equation line. The population regression line is

E ( y | x) = β 0 + β1 x1 + β 2 x2 L + β k xk5

计量经济学课程课件 赵西亮

Interpreting Multiple Regression

y = β 0 + β1 x1 + β 2 x2 + ... + β k xk , so y = β x + β x + ... + β x ,1 1 2 2 k k

so holding x2 ,..., xk fixed implies that y = β x , that is each β has1 1

a ceteris paribus interpretation6

计量经济学课程课件 赵西亮

An Example (Wooldridge, p76)The determination of wage (dollars per hour), wage:Years of education, educ Years of labor market experience, exper Years with the current employer, tenure

The relationship btw. wage and educ, exper, tenure:wage=β0+β1educ+β2exper+β3tenure+u log(wage)=β0+β1educ+β2exper+β3tenure+u

The estimated equation as below:wage=2.873+0.599educ+0.022exper+0.169tenure log(wage)=0.284+0.092educ+0.0041exper+0.022tenure

The STATA commandUse [path]wage1.dta (insheet using [path]wage1.raw/wage1.txt) Reg wage educ exper tenure Reg lwage educ exper tenure7

计量经济学课程课件 赵西亮

A “Partialling Out” Interpretation

Consider the case where k = 2, i.e. y = β + β x + β x , then β1 = (∑ ri1 yi )0 1 1 2 2 2 i1

∑ r

, where ri1 are

the residuals from the estimated regression x1 = γ0 + γ2 x28

计量经济学课程课件 赵西亮

“Partialling Out” continuedPrevious equation implies that regressing y on x1 and x2 gives same effect of x1 as regressing y on residuals from a regression of x1 on x2 This means only the part of xi1 that is uncor

related with xi2 are being related to yi so we’re estimating the effect of x1 on y after x2 has been “partialled out”9

计量经济学课程课件 赵西亮

The wage determinationsThe estimated equation as below:wage=2.873+0.599educ+0.022exper+0.169tenure log(wage)=0.284+0.092educ+0.0041exper+0.022tenure

Now, we first regress educ on exper and tenure to patial out the exper and tenure’s effects. Then we regress wage on the residuals of educ on exper and tenure. Whether we get the same result.?educ=13.575-0.0738exper+0.048tenure wage=5.896+0.599resid log(wage)=1.623+0.092resid

We can see that the coefficient of resid is the same of the coefficien of the variable educ in the first estimated equation. And the same to log(wage) in the second equation.10

计量经济学课程课件 赵西亮

Simple vs Multiple Reg Estimate~ ~ ~=β +β x Compare the simple regression y 0 1 1 with the multiple regression y = β 0 + β1 x1 + β 2 x2 ~ Generally, β1 ≠ β1 unless : β = 0 (i.e. no partial effect of x ) OR2 2

x1 and x2 are uncorrelated in the sample11

计量经济学课程课件 赵西亮

The wage determinations: exempleThe estimated equation as below:wage=2.873+0.599educ+0.022exper+0.169tenure log(wage)=0.284+0.092educ+0.0041exper+0.022tenure

The estimated equations without tenurewage=3.391+0.644educ+0.070exper log(wage)=0.217+0.098educ+0.0103exper wage=0.905+0.541educ log(wage)=0.584+0.083educ12

计量经济学课程课件 赵西亮

Goodness-of-FitWe can think of each observation as being made up of an explained part, and an unexplained part, yi = yi + ui We then define the following :

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新人文社科第2章 多元回归分析全文阅读和word下载服务。

第2章 多元回归分析.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1195576.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top