数值分析实验作业
实验报告
一、实验内容:
(1)对高阶多多项式
20
p(x) (x 1)(x 2) (x 20)
(x k)
k 1
编程求下面方程的解
p(x) x
19
0
并绘图演示方程的解与扰动量 的关系。
(2)对n 2~20,生成对应的Hilbert矩阵,计算矩阵的条件数;通过先确定解获得常向量b的方法,确定方程组
Hnx b
最后,用矩阵分解方法求解方程组,并分析计算结果。 (3)对函数
f(x)
11 25x
2
x [ 1,1]
的Chebyshev点
xk cos(
(2k 1) 2(n 1)
)
k 1,2,...,n 1
编程进行Lagrange插值,并分析插值结果。
二、实验过程:
实验一: a. 实验方案:
先创建一个20*50的零矩阵X,然后利用Matlab中的roots()和poly()函数将50个不同的ess扰动值所产生的50个解向量分别存入X矩阵中。然后再将ess向量分别和X的20个行向量绘图。即可直观的看出充分小的扰动值会产生非常大的偏差。即证明了这个问题的病态性。
b. 实验程序: >> X=zeros(20,50); >> ve=zeros(1,21);
>> ess=linspace(0,0.00001,50);k=1;
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新IT计算机电子科大数值分析实验全文阅读和word下载服务。
相关推荐: