3、探究的问题:
﹙1﹚为什么要确定图上距离与实际距离的比?什么叫比例尺?
﹙2﹚线段比例尺怎样改写成数值比例尺?
﹙3﹚怎样求一幅图的比例尺?
【教学过程】
一、导入新课
1、复习
1千米=米1米=()厘米1千米=()厘米
2、化简下面的比
8:1600=6cm:18m=
3、脑筋急转弯导入
同学们,我们做了这么几道题,大家一定很累吧,下面我们来轻松一下,来一个脑筋急转弯:北京到上海的距离大约是1200km,可是一只蚂蚁只用了5秒钟从北京爬到了上海,你知道为什么吗?
生猜:蚂蚁可能在从华安到漳州的地图上爬。
师:对了。蚂蚁爬的是地图上的图上距离,(板书:图上距离)而我们坐车所行的是从华安到漳州的实际距离。(板书:实际距离)
师:看,在这幅地图上(出示第一幅地图)从华安到漳州蚂蚁只用了4秒钟,(出示第二幅地图)在这幅地图上蚂蚁用4秒钟还能到达吗?(出示第三幅地图)在这幅地图上呢?
师:为什么同样是从华安到漳州,有的只需4秒钟就能到达,而有的却到达不了呢?(地图有大有小)
请同学们观察这几幅地图,它们虽然大小不同,但形状却一样,这是什么原因呢?(让学生思考片刻后才说,可先让学生说)是因为人们在制作这三幅地图时所用的比例尺不同,这就是我们今天要学习的内容:比例尺(板书课题)
二、自主学习,认识比例尺
1、什么叫比例尺?它是尺吗?是比例吗?请同学们打开课本53页,自学53页的内容。
2、揭示比例尺的意义。
你们从书上了解到什么叫比例尺?(嗯,是个比板书于课题后)前项是什么?后项呢?(在板书的图上距离与实际距离中加入“:”)
那就是说只要用图上距离比实际距离就能求出比例尺,还能写成什么形式?
3、了解数值比例尺和线段比例尺。
(1)出示课件
(2)把线段比例尺转化成数值比例尺。
注意:转化过程中一定要统一单位。
4、认识缩小比例尺和放大比例尺。
缩小比例尺:前项都是1,都是把实际距离按照一定的比缩小。
放大比例尺:后项都是1,都是把实际距离按照一定的`比放大。
5、教学例1.
例1:北京到天津的实际距离是120km,在一幅地图上量得两地的图上距离是2.4cm,这幅地图的比例尺是多少?
(学生讨论,独立完成,教师集体订正)
总结根据图上距离与实际距离求比例尺的方法:
a、首先依据比例尺的意义确定比的前项和后项,对应写出比;
b、接着把两项比化成相同的单位;
c、然后化简比,变成前项或后项是1的整数比;
d、比例尺是一个比,是不带单位名称。
三、练习巩固。
1、一个圆柱形零件的高是5mm,在图纸上的高是2cm,这幅图纸的比例尺是多少?
2、一副地图的比例尺1:30000000,你能用线段比例尺表示出来吗?
3、一套房子的客厅东西方向长4m,在图纸上的长度是4cm,这幅图纸的比例尺是多少?
4、判断对错,并说明理由。
(1)比例尺和尺子一样,是一种测量工具。
(2)所有比例尺的前项都是1。
(3)比例尺按照表现形式可分为数值比例尺和线段比例尺。
(4)如果一幅图的图上距离和实际距离相等,它的比例尺是1﹕1。
5、选择:
比例尺表示的是一个比,因此()计量单位。
A.有B.没有C.不一定有
四、课堂小结
通过本节课的学习,你有哪些收获?
五、布置课后作业:课本53页做一做。
六、板书设计
比例尺
图上距离:实际距离=比例尺
教学目标:
1.在实践活动中体验生活中需要的比例尺。使学生认识比例尺的意义,学会求一幅平面图的比例尺。
2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。使学生感受数学在解决问题中的作用,提高学生学习数学的兴趣和信心。
教学重点:
认识比例尺的意义。
教学难点:
求一幅平面图的比例尺。
板书设计:
比例尺
(1)9.5厘米:95米=9.5:9500=1:1000
6厘米:60米=6:6000=1:1000
(2)19厘米:95米=19:9500=1:500
12厘米:60米=12:6000=1:500
图上距离 :实际距离=比例尺
教学过程:
(包括导引新课、依标导学、异步训练、作业设计等)
一、生活原型再现
师:(出示孙楠同学的照片)你们认识他吗?他是谁?
生:孙楠。
师:怎么可能呢?照片上的人这么小,怎么会是他呢?
生:是缩小了……
师:如果孙楠的眼睛不缩小,鼻子和嘴巴缩小了,那会怎么样?
生:不像他了,像丑八怪……
师:那怎样才能像他呢?
生:都要缩小。
师:一起缩小,是吧。如果他的眼睛缩小100倍,鼻子和嘴巴缩小10倍,像他吗?
生:不像,要缩小相同的倍数。……
二、创设情境,以疑激思
同学们都喜欢足球,踢足球要讲究战术,要研究战术需要设计足球场的平面图,下面我们就来当一回小小设计师,设计出足球场的平面图。
出示:足球场:长 95米,宽60米。 学生作图。
三、独立探究,合作交流。
1、通过学生讨论,引出学习要求。
(1)确定图上的长和宽的长度;
(2)画出足球场的平面图;
(3)写上图上的长和宽的长度;
(4)分别写出图上长、宽与实际长、宽的比,并化简。
根据要求个人作图,完成后四人小组交流(重点交流你是怎么确定图上的长和宽的)选择你们组认为最好的,贴在黑板上。
2、学生小组学习。
3、学生汇报设计思路。
生1:我是把实际的长和宽都缩小1000倍,图上的长就是9.5厘米,宽就是6厘米,这样的长方形图就是足球场的平面图。……
(根据学生的汇报板书)
图上距离:实际距离
(1) 9.5厘米:95米=9.5:9500=1:1000
6厘米:60米=6:6000=1:1000
(2) 19厘米:95米=19:9500=1:500
12厘米:60米=12:6000=1:500
4、揭示比例尺的意义。
图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离 :实际距离=比例尺
师:1:500的比例尺,说说你是怎样理解的?
生:表示图上距离是实际距离的1/500;
表示实际距离是图上距离的500倍;
图上距离和实际距离的比是1:500;
图上1厘米表示实际距离5米,
介绍数值比例尺和线段比例尺。让学生掌握两种比例尺各自的特点。
四、加深理解,拓展应用。
(1)在咱学校校园的平面图上,用15厘米长的线段表示实际长度60米,你能求出这幅图的比例尺吗?
(2)辨析:比例尺是一把尺吗?
(3)比例尺一般出现在什么地方?(地图上或平面图上)
(4)出示山东省主要城市位置图。
师:在这张地图上,你去过什么地方?
师:今年暑假老师准备去泰安登泰山,你能帮老师算一算烟台到泰安有多远吗?需要什么条件?
生:比例尺。出示比例尺 1∶8000000
生:图上距离。
师:给你一把尺子能解决这个问题吗?
学生尝试解决。
交流:
生1:在这幅地图上,我用尺子量得烟台到泰安的距离是5.5 厘米,根据比例尺图上1厘米表示实际距离80千米,5.5×80=440千米。
生2:根据实际距离是图上距离的8000000倍,可以用
5.5×8000000=44000000厘米=440千米
生3:根据图上距离是实际距离的1/8000000,也可以用
5.5÷1/8000000=5.5×8000000=44000000厘米=440米
生4:老师,也可以用方程来解。
解:设烟台到泰安的距离是x厘米。
1:8000000=5.5:x
x=44000000
44000000厘米=440千米
师:那老师如果乘坐每小时100千米的汽车,几小时就能到达?
生:4.4小时
师:可是老师以前去过泰安,是需要8个多小时才能到达的,这是为什么呢?
一时,学生都皱起了眉头陷入了沉思,经过片刻的等待,终于有孩子举起了手:“老师,我们量出的图上距离是直线的,而实际的路线不可能是直的,汽车要走许多许多弯路的。”
忽有一学生喊到:“老师,如果我们通过飞机来计算,那肯定是准确的,因为飞机可是走直线的吧!”……
五、反思体验 拓展完善
1、学生谈自己的收获,总结本节课的内容。
2、你还想知道什么?
六、作业设计
自主练习:2、3
教学后记:
(包括达标情况、教学得失、改进措施等)
上完课,我有一种意犹未尽的感觉,经历了实践与理论的深思与探索,对新课标有了更深入的理解。
(1)在学生已有的经验上学习数学
新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。只有在学生的生活经验的基础上进行教学,学生才感到亲切,学得主动。通过课前展示学生的照片,学生对照片上的人是按倍数缩小了这种生活常识有了深刻的体验,再让学生来画足球场的平面图,可以说是水到渠成的。
(2)让学生经历了知识的形成过程
只有体验过,理解才会深刻。让学生在画足球场的交流互动中,体验探究比例尺的产生过程,理解比例尺产生的必要性。同时在探究过程中,学生对比例尺的意义理解是多方位的,个性化的。有了学生个性化的体验,才有了后面解决问题的个性化的表达。
(3)让学生密切联系了生活实际
数学来源与生活,又应用于生活实际。本节课从让学生设计足球场平面图,到让学生计算老师到泰安的实际距离及需要的时间,“生活中处处有数学“的理念贯穿了整个教学的始终,使学生真切地感受到学习数学的价值。
教学目标:
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新申请书比例尺教学设计人教版(推荐十五篇)(4)全文阅读和word下载服务。
相关推荐: