第一范文网 - 专业文章范例文档资料分享平台

毕业设计(论文)-基于MATLAB仿真QAM调制与解调的设计

来源:用户分享 时间:2020-06-16 本文由落花随流水 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

摘 要

正交振幅调制QAM(Quadrature Amplitude Modulation)是一种功率加宽带相对高效的信道调制技术,广泛应用于数字电视,无线宽带等传输领域。本文针对16QAM系统调制解调系统,利用MATLAB工具对整个系统进行完整仿真,并通过星座图仿真对误码率进行分析。仿真结果表明该系统简单可行,对QAM相关产品研发和理论研究具有一定的理论和实践意义。 关键词:16QAM;正交振幅调制;MATLAB;误码率

I

Abstract

Quadrature amplitude modulation (QAM) is a channel modulation techniques with relatively high efficiency of usage power and bandwidth, It is widely used in digital television,broadband and wireless transmission fields,This article in view of the 16 QAM system demodulation system,Then,Use of MATLAB tools to complete the whole system simulation,And through the constellation chart sinmlation analysis of the ber(bit error rate).Simulation results indicate that this system is both simple and feasible,It has a certain theoretical and practical significance that does the research about products related to QAM.

Keywords:16QAM;Quadrature Amplitude Modulation;MATLAB;Bit Error Rate

II

第1章 前 言

1.1 QAM的引入

QAM(Quadrature Amplitude Modulation):正交振幅调制。正交振幅调制,这是近年来被国际上移动通信技术专家十分重视的一种信号调制方式。QAM是数字信号的一种调制方式,在调制过程中,同时以载波信号的幅度和相位来代表不同的数字比特编码,把多进制与正交载波技术结合起来,进一步提高频带利用率。

单独使用振幅和相位携带信息时,不能最充分利用信号平面,这可由矢量图中信号矢量端点的分布直观观察到。多进制振幅调制时,矢量端点在一条轴上分布;多进制相位调制时,矢量点在一个圆上分布。随着进制数M的增大,这些矢量端点之间的最小距离也随之减少。但如果充分利用整个平面,将矢量端点重新合理地分布,则可能在不减小最小距离的情况下,增加信号的端点数。基于上述概念引出的振幅与相位结合的调制方式被称为数字复合调制方式,一般的复合调制称为幅相键控(APK),2个正交载波幅相键控称为正交振幅调制(QAM)。

通过实验分析,发现数字频率调制(2FSK)和数字相位调制(2PSK/2DPSK)两种调制方式都有不足之处,如频谱利用率低、功率衰减慢、抗多径衰落能力弱、带外辐射严重等。为了克服这些不足,人们不断提出一些新的数字调制技术,以满足各种通信系统的要求。正交振幅调制(QAM)即为现代数字调制技术之一,它是目前大中容量数字微波通信、有线电视网高速数据传输、卫星通信等系统中广泛使用的一种先进的数字调制技术,其最大特点是频谱利用率很高。

1.2 调制与解调

调制与解调在现代通信系统中的作用至关重要。无线电传播一般都采用高频(射频)的另一个原因就是高频适于天线辐射和无线传播。只有当天线的尺寸达到可以与信号波长相比拟时,天线的辐射效率才会较高,从而以较小的信号功率传播较远的距离,接收天线才能有效地接收信号。若把低频的调制信号直接馈送至

1

天线上,要想将它有效地变成电磁波辐射,则所需天线的长度几乎无法实现。如果通过调制,把调制信号的频谱搬至高频载波频率,则收发天线的尺寸就可大为缩小。此外,调制还有一个重要的作用就是可以实现信道的复用,提高信道利用率。

所谓调制,就是用调制信号去控制高频载波的参数,使载波信号的某一个或几个参数:振幅、频率或相位按照调制信号的规律变化。

调制的目的是把要传输的模拟信号或数字信号变换成适合传输的高频信号。该调制信号称为已调信号。调制过程用于通信系统的发端,在接收端需将已调信号还原成要传输的原始信号,该过程称为解调[1]。

现代无线通信系统中越来越多的使用了数字信号进行信号的传输,要使某一数字信号在带限信道中传输,就必须用数字信号对载波进行调制。对大多数的数字传输系统来说,由于数字基带信号往往具有丰富的低频成分,而实际的通信信道又具有带通特性,因此,必须用数字信号来调制某一较高的正弦或脉冲载波,使已调信号能通过带限信道传输。这种用基带数字信号控制高频载波,把基带数字信号变换为频带数字信号的过程称为数字调制。那么,已调信号通过信道传输到接收端,在接收端通过解调器把频带信号还原成基带数字信号,这种数字信号的反变换称为数字解调。通常,我们把数字调制与解调合起来称为数字调制,把包括调制和解调过程的传输系统叫做数字信号的频带传输系统。

一般说来,数字调制技术可以分为两种类型:(1)利用模拟方法去实现数字调制,即把数字基带信号当作模拟信号的特殊情况来处理;(2)利用数字信号的离散取值特点键控载波,从而实现数字调制。在数字调制中,所选参量可能变化状态数应与信息元数相对应。数字信息有二进制和多进制之分,因此,数字调制可分为二进制和多进制调制两种。在二进制调制中,信号参量只有两种可能取值;而在多进制调制中,信号参量可以有M(M>2)种取值。一般而言,在码远速率一定的情况下,M取值越大,则信息传输速率越高,但其抗干扰性能也越差。

数字振幅调制(ASK)、数字频率调制(FSK)和数字相位调制(PSK)是数字调制的基础,然而这3种基本的数字调制方式都存在不足之处。如频谱利用率低、抗多径衰落能力差、功率谱衰减慢、带外辐射严重等。为了改善这些不足,几十年来人们不断提出一些新的数字调制解调技术,以适应各种通信系统的要求。其主要研究内容围绕减小信号带宽以提高频谱利用率,提高功率利用率以增强抗干扰

2

性能等。在现代通信中,需要解决的实际问题很多,仅使用这三种基本的调制方式是远远不够的。20世纪60年代以来,在对流层散射通信和短波通信中,为了解决衰落现象的问题,出现了时频调制(TFSK)和时频相调制(TFPSK)等调制方式。随着大容量和远距离数字通信技术的发展,出现了一些新的问题,主要是信道的带限和非线性对传输信号的影响,新的调制技术的研究,主要是围绕充分节省频谱和高效率的利用频带展开的。多进制调制以及多参量联合调制是提高频谱利用率的有效方法,多进制正交振幅调制(MQAM)就是一个通过有限带宽信道进行数字传输的重要技术。恒定包络调制能适应信道的非线形性,保持较小的频谱占用率。

恒定包络调制是指已调波的包络保持为恒定,它与多进制调制是从不的两个角度去考虑调制技术的,它所产生的调制信号经过发送端限带后,通过非线性部件时,其输出只产生很小的频谱扩展。这种已调波具有两个最主要的特点,其一是包括恒定或起伏很小;其二是已调波具有快速高频滚降特性,或者说已调波除主瓣以外,只有很小的旁瓣,甚至几乎没有旁瓣。实际上,已调波的频谱特性与其相位路径有着紧密的关系。为了控制已调波的频谱特性,必须控制它的相位路径。

1.3 QAM的背景

20世纪50年代末出现了二相相移键控(2PSK),之后,为了提高信道的频带利用率,又提出四相相移键控(QPSK)。这两种调制方式所产生的已调波,在码元转换时刻上都可能产生180?的相位跳变,使得频谱高频滚降缓慢,带外辐射大,为了消除180?的相位突跳,60年代又在(QPSK)基础上提出了交错正交相移键控(OQPSK)。它虽然克服了180?相位突跳的问题,但是在码元转换点上仍有可能有

90?的相位突跳,同样使得频谱中高频成分不能很快的滚降。为了彻底解决相位

突跳的问题人们很自然的会想到,相邻码元之间的相位变化不应该有瞬时突变,而应该在一个码元时间内逐渐累积来完成,从而保持码元转换点上的相位连续。其相位累积规律首先出现的是直线型,这就是70年代初提出的最小频移键控(MSK)。1975年又提出升余弦型,称之为正弦频移键控(SFSK),相继出现的还有串行(MSK),以及频移交错正交调制(FSOQ),它们都是(MSK)的改进型。

3

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新人文社科毕业设计(论文)-基于MATLAB仿真QAM调制与解调的设计 全文阅读和word下载服务。

毕业设计(论文)-基于MATLAB仿真QAM调制与解调的设计 .doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1080023.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top