几何变换一----------线段关系
25.(12分)在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.
222
(1)如图1,当∠A=30°时,求证:MC=AM+BC; (2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;
(3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC
222
相交于点N,连接MN,则MN=AM+BN成立吗? 答: (填“成立”或“不成立”)
25.将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF。
(1)如图1,若∠ABC=α=60°,BF=AF。
① 求证:DA∥BC;②猜想线段DF、AF的数量关系,并证明你的猜想;
(2)如图2,若∠ABC<α,BF=mAF(m为常数),求子表示)。
的值(用含m、α的式
25.在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.
(1)如图1,DE与BC的数量关系是 ;
(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;
(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.
AAA
DDD
F
BBCCCEBE EP 图1 图2 图3 25.(12分)(2013?锦州)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.
(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想; (2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系; (3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.
P
25.如图1,△ABC为等腰直角三角形,?ACB?90,F是AC边上的一个动点(点F与
A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD. (1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论; ②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度?,得到如图2、图3的情形. 图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图证明你的判断. .2.(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,?ACB?90,正方形
??CDEF改为矩形CDEF,如图4,且AC?4,BC?3,CD?24,CF?1,BF32A AAA DFFEOEH F O H CEBBCE C B BDC FD D 图2 图1 图3 图4
25.正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.
(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为:_________;
(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转
90°,得到线段FQ,连接EQ,请猜想EF、EQ、BP三者之间的数量关系,并证明你的结论. (3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出EF、EQ、
BP三者之间的数量关系:___________.
交AC于点H,交AD于点O,连接BD、AF,求BD?AF的值.
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高中教育辽宁中考几何变换练习题 全文阅读和word下载服务。
相关推荐: