FHRegensburg,UniversityofAppliedSciencesProf.Dr.-Ing.G.Rill
2.2ContactGeometry
2.2.1DynamicRollingRadius
Atanangularrotationof ,assumingthetreadparticlessticktothetrack,thede ectedtiremovesonadistanceofx,
Fig.2.2.
deflected tirerigid wheelFigure2.2:DynamicRollingRadius
Withr0asunloadedandrS=r0 rasloadedorstatictireradius
r0sin =x
and
(2.2)
r0cos =rS.
hold.
(2.3)
Ifthemovementofatireiscomparedtotherollingofarigidwheel,itsradiusrDthenhastobechosenso,thatatanangularrotationof thetiremovesthedistance
r0sin =x=rD .
Hence,thedynamictireradiusisgivenby
(2.4)
rD=
r0sin
.
(2.5)
For →0onegetsthetrivialsolutionrD=r0.
Atsmall,yet niteangularrotationsthesine-functioncanbeapproximatedbythe rsttermsofitsTaylor-Expansion.Then,(2.5)readsas
rD=r0
1
3=r0
11 2
6
.(2.6)
15
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高中教育Automobiles - Vehicle_Dynamics(20)全文阅读和word下载服务。
相关推荐: