项目进度管理
10P.Bruckeretal./EuropeanJournalofOperationalResearch112(1999)3±41
schemeonejschedule3ofiPtheifforanytwodi erentactivitiesiYjexactlyCfollowingrelationsholds:i3jPCorfeasibleschemeoriÀjP CDYDorYNikjPNori$jPU.Aallschedules(whichmayYU bede®nesempty),anamelysetofinCfeasibleYDYNscheduleswhichsatisfyalltherelationsDIfC.
0isthesetofallgivenprecedencerelations,be0straints,processedisthesetofinallparallelpairsofactivitieswhichcannotthenschedules. CandUduetotheresourcepairsicon-0thesetofallremaining$j,0YD0YYofthe CYYUD0 representsthesetofallfeasible00YYYU0 correspondstotherootitForenumerationascheduleschemetree.
oftheform CYDsatisfyingcanbeshownthateithernofeasiblescheduleYNYY feasiblecanscheduleallthecanrelationsbecalculatedexistsor(cf.a[117]).dominatingofbedoneinO n3 time.Thus,scheduleschemesBoththetheform CYDYNYY canbetreatedasplacingenumerationa¯exibilitytreeandonecanbranchleavesbyre-ofschemesTheinclusionrelationi$jbyiÀjorikj.nodeallowstoformofconjunctionsatemporalanalysisinscheduleineachconjunctions,oftheenumerationaredisjunctionstree.orByparallelitythisanalysisrelationsnewwindowsdeduced.boundcanFurthermore,becalculatedforwhichtheimproveactivitieslowertimemacherMinimalcalculations.
scheme[99,100]forbiddenhavesets:introducedIgelmundaandbranchingRader-detailedbasedinSectionsdiscussiononminimaloftheseforbiddenconceptscansets.beAmoreSectionBesidelower6.2andbounds8.2offoundwhichthissurvey.
arewithinDemeulemeestere.g.3.2,thedominancepartialenumerationrulesaresuccessfullydescribedusedinSprechersearch[185]inorderandtoHerroelenalgorithmsprunelarge[48,49]paresDuringaboutthealreadyevaluatedpartialstoredobtainabledata.theIfcurrentpartialsearchscheduleprocesswiththerulethenotfromitthecancurrentbeprovenpartialthatscheduleanysolutioncan-previouslybebetterevaluatedthanasolutionpartialscheduleobtainablethefrominfor-
amationtrackingofrulestheisskippedmaywhichbehasbeenstored,thenback-hereperformed.fortheAsakedescriptionofsuchrulesreaderareoutlined.
isreferredtoSectionof5.2shortnesswheresomeand3.2.Lowerbounds
valueUsuallylowerboundsfortheoptimallaxingof jpre jgsolutionmaxcanbecalculatedlaxedsomeoftheconstraintsandsolvingthebyre-re-resourceproblemlengthconstraintstooptimality.leadstoRelaxationthecriticaloftheStinsonwhichanetal.[188]providesasimplelowerbound.pathpathactivitytimeg .Theyiwhichimprovecalculatedoesanotthismaximalbelongboundbyaddingnumbertoacriticalewithpathg units.Byactivityaddingimaxcanfbe0YpprocessedinparalleliofiÀesteadlengthanewlowerboundiisgtothecriticalandpathHerroelenofaddingaugmentasingleactivity,Demeulemeesterprovided.In-bound node-disjointprocedure.forg usingwithaag criticaldynamicandcalculatepathg byaprogrammingalowercoincideg ation (cf.withIngeneral[172]).theHowever,optimalthislowersolutionbounddoesnotthetwo-pathvaluerelax-formethodcantwooptimaljobs.developedbesolvedThisapproachfortotheoptimalityjobbyagraphicalalsoshopallowsproblemtowithwindowssolutionforg whichrespects®ndtimeanfollowingAboundforoftheactivitiesing (cf.[28]).thelinearMingozziprogrametwhichal.[126]isbasedontheTheyprecedencebeconsidermaximalconstraintssetsandallowsrelaxespreemption.partiallycharacteristicprocessedinparallel.Letof activities whichcan1Y2YFFFY qbethelinearprogrammingvectorsrelaxationofallthesehassets.theformThenthemin qxj
1 j 1 qsXtX
ijxjPpiYi 1YFFFYnY
2 j 1
xjP0Yj 1YFFFYqY
3
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高中教育Resource-constrained project scheduling_ Notation, classification, models, and methods(8)全文阅读和word下载服务。
相关推荐: