项目进度管理
20P.Bruckeretal./EuropeanJournalofOperationalResearch112(1999)3±41
constraintsoptimal scheduleforthe itfollowingholdsthatreasons: Foreach0 0.Moreover,any0 0forallSinceheuristicfeasiblethereallparametersmethodschedulesddiscussed constructedinSectionusing6.3.ij iYj PiprovidedalwaysSections6.2thatexistsanintegeroptimal areintegers,scheduleandS Y.AllmethodsdiscussedindecompositionForapproximately6.3constructsolvinginteger jtempschedules.jgexpedient.isAcycleapproachoftenturnsoutmaxto,beanodes.astrongcomponentstructurewhichofcontainstheprojectatnetworkrateForeachcyclestructuretreatedasleastasepa-twoandsubprojectcorrespondingstartedattimewithzero,originalaschedulingresourcecapacitieswhosesubschedules(feasible)toproblemssolutions(4)±(6)arecanbeproblemstatedproventhefollowing.Neumanntheorem.
andZhancalled[140](feasible)workThereisafeasiblesched-foreachifcycleandonlystructure.ifthereisaly)Severalstrictsolvingheuristicprojectschedulingproceduresproblemsfor(approximate-requirelengthordertheofa0longestinnodepathsetfrom (cf.node[70]).iLettodaijbethepathprojectifrominetwork,toj.ForwhereiYdtherenodeisjnoinij ÀIifand0jdifandonlyifeitherjP(a) Ydi j,0weorthen(b)dde®neijbij 0ji`0.
6.2.Branch-and-boundmethods
forThemalsolvingbasic ideajofbranch-and-boundalgorithms example,jtempsolutiontempjgtothejgmaxresourceisasfollows.relaxationAnopti-ofmax(i.e.problemsi theearliestschedulei (4) and i (5)),forj jP withStartingj d0j,atwithcanschedulebefound i inpolynomialtime.
pointsintimet,thatis,,resourcecon¯ictsrjkb kforsomekPRandp A Yt
jPp
7
cantionalbeseveraltemporalresolvedsuccessivelyconstraintsbywhichintroducingdelayoneaddi-biddenclusion,setactivities.SetpinEq.(7)iscalledafor-orReyckBartuschit.isIftermedpisminimalwithrespecttosetin-etal.[12],aminimalDeReyckforbidden[51],setand.
precedenceandHerroelenwhichpcorrespondconstraints[54]toaddingofhaveDethearcstypeused ``ordinary''jP i pi,disjunctivetothenetwork.precedenceSchwindt iYj withweighticonstraints[174]hasintroduced jPiPminpnfjg
i pi Y
8
wheredelayingpbeonlyisaoneminimalactivityforbiddenjset.Insteadofminimaldelayedatthesametimewhich,severalformactivitiesacan(Eq.(8))isdelayingreplacedalternativeby(cf.[51]).so-calledThenminjPw2
jPminiPw1
i pi
withwminimaldelayingalternativew2andcontaining1X A Yt nw2.w2forbiddensetatleastoneiselementaninclusion-minimalofeachminimalsetconsideredTosolveproblemtwo p jA Yt .
partialtempjgproblems.max,SchwindtThesequencing[174]haswhichsuchschedulingthatsatisfyconsistsY disjunctiveof®ndingSprecedenceaset ofconstraintsschedules S.Thesubjectordinarytogionprecedence problemPSconsistsofminimizingcorresponding n 1 .IncontrasttothecaseofconvexSconstraints,thefeasiblere- ofthelatterproblemused,dra.butifrepresentsdisjunctivetheprecedenceisnolongerunionconstraintsareforvisedsolvingApseudopolynomialofconvexpolyhe-bySchwindtthescheduling[174].
problem®xed-pointhasalgorithmbeende-of appropriatelyThebranch-and-boundalgorithmthenconsistsYFFFY rwith enumeratingrsequencingsuchsolutions1m 1 S m Sthatmin PS
n 1 m min
1YFFFYr PminS m
n 1X
Preprocessingboundsand-boundandproceduresaswellasgoodlowermethodfathoming(see[174]).rulesspeedAnoverviewuptheofbranch-recent
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高中教育Resource-constrained project scheduling_ Notation, classification, models, and methods(18)全文阅读和word下载服务。
相关推荐: