第一范文网 - 专业文章范例文档资料分享平台

Simulation of fluid slip at 3D hydrophobic microchannel walls by the lattice Boltzmann meth(9)

来源:用户分享 时间:2021-04-05 本文由寸旧时光 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

190L.Zhuetal./JournalofComputationalPhysics202(2005)181–195

Position on bottom channel wall (microns)25020015010050

011.21.4

Slip length (microns)Position on side channel wall (microns)Slip length (y-direction)300Slip length (z-direction)30252015105(c)(a)011.21.4(b)Slip length (microns)

Fig.5.(a)and(b)depicthowthe uidsliplengthvariesalongtheperimeterofthechannelatstreamwisepositionofx=300lm.(a)Variationofsliplengthasafunctionofyalongthetoporbottomwall.(b)Variationofsliplengthasafunctionofzalongthesidechannelwalls.(c)Measurementsampleplaneandthelocationsofsliplengthplottedin(a)and(b).

(separatedby30lm).However,themagnitudesaresimilar,rangingbetween1.1and1.4lm.Fig.5(c)showsthemeasurementsampleplaneandthelocationsofsliplengthplottedinFigs.5(a)and(b).

3.2.Multi-componentlatticeBoltzmannsimulation

Inthesecondpartofourwork,weinvestigatedapossiblegeneratingmechanismforapparent uidslip

[2],viathemulti-componentlatticeBoltzmannmethod(theS-Cmodel).Weperformedthesimulationona0.1·1·2lm3microchannel.Thegridspacingis5nm.Thenon-dimensionalhydrophobicwallforceusedinthesimulationis0.2,correspondingtoaphysicalforceof4·10À3dyn/cm3withadecaylengthof6.5

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

L.Zhuetal./JournalofComputationalPhysics202(2005)181–195191

nm,aswasspeci edinSection2.Theappropriatemagnitudeofthisforceisnotwellde ned.However,Vinogradova[21]modeledattractivehydrophobicinteractionsasadecayingexponentialwithamagnitudeof1dynandadecaylengthofbetween5and15nm.Forthecurrentsimulation,theforcefunctionwaschosensothatthesimulationresultswouldbeconsistentwithexperimentalobservations.Whilethedecaylength,k=6.5nm,isconsistentwiththevaluesofVinogradova[21],themagnitudeofthehydrophobicforce,4·10À3dyn,issigni cantlylower.Thedi erencemayarisefrompossiblenon-uniformitiesinthehydrophobicOTScoatingsinthemicrochannels.Thisrepulsivehydrophobicforcecausesthedensityofthesynthetic uidusedtosimulatewaterinthemulti-componentlatticeBoltzmannsimulationtobegreaterthan1.Werescaledthedensityto1forthe uidusedtomodelwaterbythemaximumdensityinthesim-ulationresult(about1.07).

Weperformedsimulationsonaseriesofgraduallyre nedgrids.Thenumberofnodesinthezdirectionwas10,15,20,25,30.Wefoundthatthe uidslippercentagewasconvergentasthegridwasre ned.

Fig.6showsthe uiddensitiesasafunctionofdistanceawayfromthesidewallatthecross-sectionx=1lmandz=50nm.Thex-axisisthedensityandthey-axisisthedistancefromthesidewall.Fig.6(a)showsthedensityofthe uidusedtosimulatewaterinthemodelalongtheydirection(inthemiddleofthezdirection)onacross-sectioninthemiddleofthechannel(xdirection).Fig.6(b)showsthedensityofthe uidusedtosimulatewatervapor/air.Wecanseethatthedensityofwaterisdecreasedandthatofwatervapor/airisincreasedclosetothewalls.Fig.7givesadetailedpictureofthedensitychangeclosetothewall.Sakuraietal.[20]havealsoobservedadrasticdecreaseofthewatermoleculenumberdensityatamonolayer–waterinterfacefromthesimulationresultsofwaterbetweenhydrophobicsurfaces,viamoleculardynamics.Ourresultsareconsistentwiththeirs.

Fig.8showsthenormalizedstreamwisevelocitypro leandalocalblowupalongtheydirectionatcross-sectionx=1lmforz=50nm.Thex-axisisthenormalizedvelocity,andthey-axisisthepositionfromthesidewall(unit:micron).Thesolidline(in(a)and(b))isthevelocitypro lewhennowallforcesarepresent.

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

192L.Zhuetal./JournalofComputationalPhysics202(2005)181–195

Thedottedline(inpart(a)),orthedashedline(inpart(b))isthecasewherewallforcesareintroduced.Incontrasttotheformercase,thelatterresultsinapparentslipatthewalls.(SeeFig.8(b)forthelocalblowupnearthesidewall.)WecanseefromFigs.6–8thatintheregionveryclosetothewalls,thewaterdensitydecreasesandthewatervapor/airdensityrises.Thisenablesthe uidsliponthewalls(approximately9%offreestreamvelocity)comparedtothesolidlinesinFig.8,whichillustratethecasewherenohydrophobicwallforceswereapplied.

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

L.Zhuetal./JournalofComputationalPhysics202(2005)181–195193

4.Summaryanddiscussion

WiththesinglephaselatticeBoltzmannmethod(D3Q19model),wesimulatedthe owofwaterina3Dmicrochannelwithhydrophilic/hydrophobicwalls.Theclassicbounce-backschemewasusedtomodelthehydrophilicwalls,whileacombinationofbounce-backandspecularre ectionwasappliedtomodelthepartialslipboundaryconditionatthehydrophobicwalls.Goodquantitativeagreementwasobservedbe-tweenthesimulationsandpreviousexperimentalresults.Inthecaseofhydrophilicwalls,thesimulationresultagreesalmostexactlywiththeanalyticsolution.Inthecaseofhydrophobicwalls,a10%slipwasattainedbyassigningtheprobabilityofbounce-backto0.03andtheprobabilityofre ectionto0.97.ThevalueofqisconsistentwithSucciÕswork[55].Thisseemstoindicatethatpartial uidslipgeneratedbyhydrophobicitymaybemodeledbyacombinationofbounce-backandspecularre ection.However,itremainstobefurtherveri edwhetherthecombinationschemecanaccuratelycapturetheslipmotioncausedbyhydrophobicity.See[55]fordetails.

WiththemultiphaselatticeBoltzmannmethod(theS-Cmodel),weinvestigatedapossiblemechanismfor uidslip.Duetocomputationallimitations,thecorrespondingphysicalsizeofthesimulationdomainwas0.1·1·2lm,whereastheexperimentalresultswereobtainedinamicrochannelwithacross-sectionof30·300lm.Thehydrophobicwallsweremodeledbyapplyinganexponentiallydecayingforceof4·10À3dynwithadecaylength6.5nmfromthewall,whichisconsistentwiththeworkofVinogradona

[21].Thisforcerepelsthewatermolecules,buthasnoe ectontheair/watervapormolecules.Theforceproducesaslipofapproximately9%ofthemainstreamvelocity,whichcorrespondstotheexperimentall-PIVresults.Itindicatesthatthepresenceofadepletedwaterlayer(lowdensityregion)nearthehydro-phobicsurfacemayproducetheapparent uidslipobservedexperimentally.

Acknowledgment

WethankthefollowingpeoplefortheirusefulconversationsanddiscussionsofthelatticeBoltzmannmethod:ShulinHou,ShiyiChen,HudongChen,NicosMartys,XiaoboNie,andLishiLuo.

References

[1]D.C.Tretheway,C.D.Meinhart,Apparent uidslipathydrophobicmicrochannelwalls,Phys.Fluids14(3)(2002)L9.

[2]D.C.Tretheway,C.D.Meinhart,Ageneratingmechanismforapparent uidslipinhydrophobicmicrochannels,Phys.Fluids16

(5)(2004)1509.

[3]C.H.Choi,K.J.A.Westin,K.S.Breuer,Apparentslip owsinhydrophilicandhydrophobicmicrochannels(submitted).

[4]D.Lumma,A.Best,A.Gansen,F.Feuillebois,J.O.Radler,O.I.Vinogradova,Flowpro lenearawallmeasuredbydouble-focus uorescencecross-correlation,Phys.Rev.E67(2003)056313.

[5]R.G.Horn,O.I.Vinogradova,M.E.Mackay,N.Phan-Thien,Hydrodynamicslippageinferredfromthin lmdrainagemeasurementsinasolutionofnonadsorbingpolymer,J.Chem.Phys.112(14)(2000).

[6]K.Watanabe,Yanuar,H.Mizunuma,SlipofNewtonian uidsatsolidboundary,JSMEInt.J.Ser.B41(1998)525.

[7]K.Watanabe,Yanuar,H.Udagawa,DragreductionofNewtonian uidinacircularpipewithahighlywater-repellantwall,J.FluidMech.381(1999)225.

[8]E.Ruckenstein,P.Rajora,Ontheno-slipboundaryconditionofhydrodynamics,J.ColloidInterfaceSci.96(1983)488.

[9]J.Barrat,L.Bocquet,Largeslipe ectatanonwetting uid–solidinterface,Phys.Rev.Lett.82(1999)4671.

[10]N.Churaev,V.Sobolev,A.Somov,Slippageofliquidsoverlyophobicsolidsurface,J.ColloidInterfaceSci.97(1984)574.

[11]Y.Zhu,S.Granick,Rate-dependentslipofNewtonianliquidatsmoothsurfaces,Phys.Rev.Lett.87(2001)096105.

[12]R.Pit,H.Hervet,L.Leger,Directexperimentalevidenceofslipinhexadecane:solidinterfaces,Phys.Rev.Lett.85(2000)980.

[13]P.A.Thompson,S.M.Troian,Ageneralboundaryconditionforliquid owatsolidsurfaces,Nature389(6649)(1997)360–362.

[14]O.I.Vinogradova,Slippageofwateroverhydrophobicsurfaces,Int.J.Miner.Process.56(1999)31–60.

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高中教育Simulation of fluid slip at 3D hydrophobic microchannel walls by the lattice Boltzmann meth(9)全文阅读和word下载服务。

Simulation of fluid slip at 3D hydrophobic microchannel walls by the lattice Boltzmann meth(9).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1182557.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top