第一范文网 - 专业文章范例文档资料分享平台

Lensed CMB power spectra from all-sky correlation functions(17)

来源:用户分享 时间:2021-06-02 本文由寂寞安抚 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

140.02

ClΘ/ClΘ

0.01 0 0.01

2 10

40

100

200

400

700

1000

1500

2000

3000

ClX/(ClE ClΘ )1/2

0.01

0

0.01

2 10

40

100

200

400

700

1000

1500

2000

3000

0.01

ClE/ClE

0

0.01

2 10

40

100

200

400

700

1000

1500

2000

3000

0.4

ClB/ClB

0.3 0.2 0.1 0 2 10 40 100 200 400 700 1000 1500 2000 3000

lFIG. 6: The fractional change in the lensed Cl due to non-linear corrections using halofit[21] for the same model as Fig. 4. The lensed Cl are computed using our new accurate method.

giving a> 6% increase in power on all scales. On scales beyond the peak in the B-mode power (l 1000) the extra non-linear power becomes more important, producing an order unity change in the B-mode spectrum on small scales. On these scales the assumption of Gaussianity is probably not very good, and the accuracy will also be limited by the precision of the non-linear power spectrum. For more accurate results, more general models, and on very small scales where the non-Gaussianity of the lensing potential becomes important, numerical simulations may be required (e.g. see Refs.[25, 26]). There are, of course, other non-linear e ects on the CMB with the same frequency spectrum as the primordial (and lensed) temperature anisotropies and polarization. The kinematic Sunyaev-Zel’dovich (SZ) e ect is the main such e ect for the temperature anisotropies, and current uncertainties in the reionization history and morphology make the spectrum ClΘ uncertain at the few percent level at l= 2000[27]. This is a little larger than the error in the rst-order harmonic lensing result, but this doesn’t mean that one should be content with the error in the latter. Precision cosmology from the damping tail will require accurate modelling of both lensing and the kinematic SZ e ect. Errors at the percent level in the lensing power on these scales would seriously limit our ability to constrain reionization scenarios with future arcminute-resolution observations. For the polarization spectra, the kinematic SZ e ect is much less signi cant[28].VI. CONCLUSIONS

We have presented a new, fast and accurate method for computing the lensed CMB power spectra using spherical correlation functions. Previous perturbative methods were found to be insu ciently inaccurate for precision cosmology,

Weak lensing of the CMB changes the unlensed temperature anisotropy and polarization power spectra. Accounting for the lensing effect will be crucial to obtain accurate parameter constraints from sensitive CMB observations. Methods for computing the lensed

andnon-perturbativeresultsinthe at-skyapproximationareinerroratabovethecosmic-variancelevel.Themethoddevelopedhereshouldenableaccuratecalculationofthelensinge ecttowithincosmic-variancelimitstol 2500undertheassumptionsoftheBornapproximationandGaussianityoftheprimordial elds.Non-linearcorrectionstothelensingpotentialhaveonlyasmalle ectonthelensedtemperaturepowerspectrum,butareimportantonallscalesforanaccuratecalculationofthelensedB-modepowerspectrum.

VII.

ACKNOWLEDGMENTS

WethankGayoungChonforherworktowardsimplementingthefull-skylowest-orderlensingresultofRef.[3]incamb,andALthanksMatiasZaldarriaga,MikeNolta,OliverZahn,PatriciaCastro,PatMcDonaldandBenWandeltfordiscussionandcommunication.ACacknowledgesaRoyalSocietyUniversityResearchFellowship.

APPENDIXA:ROTATINGSPIN-WEIGHTHARMONICS

n istherotationoperatorcorrespondingtoEuleranglesα,βandγ.This ,whereDConsiderevaluatingsYlmatD

1andevaluatingatn .Forspin-0harmonicsweisthesameasrigidlyrotatingthefunctionsYlm(asascalar)byD

knowthat

l n )=Dmn).Ylm(D′m( γ, β, α)Ylm′(

(A1)

Forspin-sharmonics,wenotethat

n)sYlm(

,sothatwhere(θ,φ)referton

l

Dmn)=( 1)m′m( γ, β, α)sYlm′(

=( 1)m

l

D ms(φ,θ,0),

(A2)

=( 1)m=( 1)m

4π4π

llDm′m( γ, β, α)D m′s(φ,θ,0)llD mm′(α,β,γ)Dm′s(φ,θ,0)l′′D ms(φ,θ,κ)

n )e isκ.=sYlm(D

(A3)

(α,β,γ)D (φ,θ,0)=D (φ′,θ′,κ),sothat(θ′,φ′)refertotheimageofn (α,β,γ),andκ underDHere,wehaveusedD

n tomapthepolarbasisvectorsthereontotheimageofthepolarbasisistheadditionalrotationrequiredaboutD

′ underD(α,β,γ).Denotingthepolarbasis(unit)vectorsatn byeθandeφ,andatn ′bye′atnθandeφ,wehave

′±iκ e′D(eθ±ieφ).θ±ieφ=e

(A4)

Thisensuresthatthe2l+1rank-stensor elds±Ylm( n)≡±sYlm( n)(eθ ieφ) ··· (eθ ieφ)transformirreducibly

l ±Ylm=underrotationsasDm′Dm′m±Ylm′.

APPENDIXB:EVALUATIONOFXimn

Theintegrals

Ximn≡

σ2

thatarerequiredforthenon-perturbativecalculationofthelensedpowerspectraonthesphericalskycaneasilybe

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新人文社科Lensed CMB power spectra from all-sky correlation functions(17)全文阅读和word下载服务。

Lensed CMB power spectra from all-sky correlation functions(17).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1193278.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top