1– ′ 1andn 2.thenn′1basisatn1)tothegeodesicbasisconnectingn
2alittlemoreworkisrequired.Letχ′denotetheanglebetweenthegeodesicsForthelensedpolarizationatn
2ton ′ 1(alongthez-axis)ton ′ 2onthegeodesicbasisconnectingn2,andn2(seeFig.3).Thelensedpolarizationatn 1andn 2isthenadaptedton
2iχ′ 2iψ2 ( .Pn2)=P( n′)ee2
(47)
′Wecanwriten2asthedirectionobtainedbyrotatingadirectionwithpolarangles(α2,ψ2)byanangleβaboutthe
′y-axis,i.e.n2=D(0,β,0)(α2,ψ2).WritingPas(Q iU),andusingEq.(42),wehave
P( n)=(Elm+iBlm) +2Ylm( n).(48)
lm
Usingtherotationpropertiesofthespin-sharmonics(seeAppendixA),wethen nd
2iχ′ 2iψ2 2iκl eP( n2)=ee(Elm+iBlm) Dmm′(0,β,0)2Ylm′(α2,ψ2).
lmm′
(49)
′Theangleκistherotationaboutn2thatisrequiredtobringthepolarbasisthereontothatobtainedbyrotating (0,β,0).Sincethelatterisalignedwiththegeodesicbasisadaptedton 2andn ′thepolarbasisat(α2,ψ2)withD2,
′ 2simpli estowehaveκ=χandthelensedpolarizationatn
( Pn2)=e 2iψ2(Elm+iBlm) dl(50)mm′(β)2Ylm′(α2,ψ2).
lmm′
Wecannowquicklyproceedtothefollowingexpressionsforthelensedpolarizationcorrelationfunctions:
2iψ1 2iψ2 ξ+(β)=(ClE+ClB)dl ,2Ylm(α1,ψ1)2Ylm′(α2,ψ2)emm′(β) e
lmm′
(51)(52)(53)
(β)=ξ
lmm′
X(β)=ξ
lmm′
2iψ1 2iψ2
(ClE ClB)dl , 2Ylm(α1,ψ1)2Ylm′(α2,ψ2)emm′(β) e 2iψ2ClXdl ,mm′(β) Ylm(α1,ψ1)2Ylm′(α2,ψ2)e
wheretheexpectationvaluesareoverlensingrealizations.Here,ClEandClBarethepowerspectra |Elm|2 and
|Blm|2 respectively.Thecross-correlationpowerspectrumisClX≡ ΘlmElm .
WeevaluatetheexpectationvaluesinEqs.(51–53)followingtheearliercalculationforthetemperature,i.e.ex-pandingPr(α1,α2,ψ1,ψ2)tosecondorderinCgl,2beforeintegrating.Asforthetemperature,Cgltermscontribute
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新人文社科Lensed CMB power spectra from all-sky correlation functions(12)全文阅读和word下载服务。
相关推荐: