分式知识点复习
分式复习
考点1:分式的运算
AA1.分式:整式A除以整式B,可以表示成 的形式,如果除式B中含有字母,那么称 BB
为分式.
AAA注:(1)若B≠0,则有意义;(2)若B=0,则无意义;(2)若A=0且B≠0,则=0 BBB
2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的
值不变.
3.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.
4.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式
的通分.
5.分式的加减法法则:
(1)同分母的分式相加减,分母不变,把分子相加减;
(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则
进行计算.
6.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作
为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.
7.通分注意事项:
(1)通分的关键是确定最简公分母,最简公分母应为各分母系救的最小公倍数与所有相同因式的最高次幂的积;
(2)易把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.
8.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.
考点2:分式方程及其应用
1.分式方程.分母中含有未知数的方程叫做分式方程.
2.分式方程的解法:解分式方程的关键是去分母(方程两边都乘以最简公分母将分式方程
转化为整式方程.
3.分式方程的增根问题:
⑴ 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根——增根;
⑵ 验根:因为解分式方程可能出现增根,所以解分式方程必须验根.
4.分式方程的应用:
列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住
“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.
5.通过解分式方程初步体验“转化”的数学思想方法,并能观察分析所给的各个特殊分式或
分式方程,灵活应用不同的解法,特别是技巧性的解法解决问题.
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新经管营销分式知识点复习全文阅读和word下载服务。
相关推荐: