We consider the infinite family of Feynman graphs known as the "banana graphs" and compute explicitly the classes of the corresponding graph hypersurfaces in the Grothendieck ring of varieties as well as their Chern-Schwartz-MacPherson classes, using the c
BANANAMOTIVES5
thoughweseeinLemma1.2belowthatitiswellde nedalsoonthegeneralpointofΣn,itslocusofindeterminaciesbeingonlythesingularitysubschemeofΣn.
LetG(C)denotetheclosureofthegraphofC.ThenG(C)isasubvarietyofPn 1×Pn 1withprojections
(1.17)G(C)????π2 π1 ?? ? CPn 1______Pn 1ThestandardCremonatransformationofPn 1isthemap 1(1.15)C:(t1:···:tn)→.tnThisisaprioride nedawayfromthealgebraicsimplexofcoordinateaxes n 1ti=0} Pn 1,(1.16)Σn={(t1:···:tn)∈P|i
ingcoordinates(s1:···:sn)forthetargetPn 1,thegraphG(C)hasequations
(1.18)t1s1=t2s2=···=tnsn.
Inparticular,thisdescribesG(C)asacompleteintersectionofn 1hypersurfacesinPn 1×Pn 1withequationstisi=tnsn,fori=1,...,n 1.
Proof.Theequations(1.18)clearlycutoutG(C)overtheopensetU Pnwhereallt-coordinatesarenonzero.Sinceeverycomponentofaschemede nedbyn 1equationshascodimension≤n 1,itsu cestoshowthatequations(1.18)de neasetofcodimension>n 1overthecomplementofU.Nowassumethatatleastoneofthet-coordinatesequal0.Withoutlossofgenerality,supposetn=0.Intersectingwiththelocusde nedby(1.18)determinesthesetwithequations
t1s1=···=tn 1sn 1=tn=0,
whichhascodimensionn>n 1,aspromised.
ItisnothardtoseethatthevarietyG(C)hassingularitiesincodimension3.Itisnonsingularforn=2,3,butsingularforn≥4.
TheopensetUasaboveisthecomplementofthedivisorΣnof(1.16).TheinverseimageofΣninG(C)canbedescribedeasily.Itconsistsofthepoints
((t1:···:tn),(s1:···:sn))
suchthat
{i|ti=0}∪{j|sj=0}={1,...,n}.
Thislocusconsistsof2N 2componentsofdimensionn 2:onecomponentforeachnonemptypropersubsetIof{1,...,n}.ThecomponentcorrespondingtoIisthesetofpointswithti=0fori∈Iandsj=0forj∈I.
Thesituationforn=3iswellrepresentedbythefamouspictureofFigure1.Thethreezero-dimensionalstrataofΣ3areblownupinG(C)asweclimbthediagramfromthelowerlefttothetop.Thepropertransformsoftheonedimensionalstrataareblowndownaswedescendtothelowerright.Thehorizontalrationalmapisanisomorphismbetweenthecomplementsofthetriangles.TheinverseimageofΣ3consistsof23 2=6components,asexpected.
Ofcoursethesituationiscompletelysymmetric:thealgebraicsimplex(1.16)maybe 1 1(Σn)=π2(Σn).embeddedinthetargetPnaswell(withequationisi=0).Onehasπ1
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新工程科技Feynman motives of banana graphs(7)全文阅读和word下载服务。
相关推荐: