第一范文网 - 专业文章范例文档资料分享平台

Printed in Great Britain PII S0898-1221(98)00210-7 0898-122198 19.00 + 0.00 Discrete Linea(5)

来源:用户分享 时间:2021-06-03 本文由劫难与你 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

holds.

PROOF. W e referto[19,Theorem 3.4.1] (observe also[19,Corollary 3.4.4]).

|

LEMMA 3. (Reid Roundabout Theorem; see[14, Theorem 3].) Suppose the system (H) is contro//able on J* (see Definition 3). Let (X, U) and (X, U) be the special normalized conjoined

bases of (H) at 0 (see Definition 1). Then,~> 0 (see Definition 2) if and only if

KerX~+t c KerXk,I

XkX~+l(I - Ak)-IBk>_O,

for all/c E J,

M:=R*R T+ R

UN+I

UN+I

0)(0

X N+l invertible,XN+I

XN+I

>0,

onImR

holds.

PROOF. W e referto[14,Theorem 3] and remark that R{RtR*RtR} R T= R * R T holds.

|

6. I S O L A T E D N E S S OF E I G E N V A L U E SIn this section,we wish to establishTheorem 1(i).Consider the followingcondition. For all Ao E R there exists e> 0 such that XN+I(A) is invertible and~N+,(A) (UNI(A) 0 ) (xNOI(A) I ) -1 isstrictlydecreasingfor A E[Ao-e, ON+,(A) Ao+~]\{Ao}, where (X(A), U(A)) and (X(A), 0(A)) are the special normalized conjoined bases of (H) at 0 for every A E R.Of course, condition (I) implies by the index theorem, L e m m a 2 (observe also L e m m a 1 and the

(I)

continuity of the Hk(A), k E J), that the singular points of

A(A)= R, IxNOI(A)=

.~N+I(A)I.jcRIuN+II(A) 0+n

I

R"

(-Xo(~) k~~~ x+()

x+(~°)ku~+~(~)(uo(~)t~JO°(~) N~r(~~/ l 2~ )

~-,+,.,,

i.e.,(according to Theorem 2) the eigenvaluesof (E), are isolated.Therefore our goal is to show that (V1) and (V2) imply (1).This we will achieve by showing some lemmas. L E M M A 4. Suppose (X(A), U(A)) is a conjoined basis of (HA) for eac~ A E R with Xo(A)=

0o(~)= 0. Then,k-1/x~+1(~)~T~(~) (x~+~(~)) X~(~)0k(~)-u~C~):~k(~)= - E\ U~(~) )\ U~(~)m=0

holds for al/k E J*\{0} and for al/A E R.

bohner~mr, edu Abstract--This paper introduces general discrete linear Harniltonian eigenvalue problems and characterizes the eigenvalues. Assumptions are given, among them the new notion of strict control-lability of a discrete system, that imply isolated

188

M. BOHNER

PROOF. Let A, p R and m J. Then,

n[X~(.){U.(A) - U~(.)} - U~(.){X~(A) - X~(.)}]= n[x~(~)u~(A) - G~(~)x.(A)]= A[ t u.(~) -x.(A)

t u.(~) ) j t t-x-+~(A) )

+;/x.+,(~)

{~(u.cx)

~

={~(-U~(")'TI (x'+r(A))-(X'+~(")'{ T t x.(.); t u.(A) t, u.(.) ) t x.(A) ) )u.(,) )j\ u.(A) ) - t u.(v): ( x,.+,(.) ) T (x.+,(A)~= - I t U.(#){Hm(A)-H,.(#)} U.(A) )" Now, division by A -# and letting/~tend to A yields

s,_x.+,<>,)+ k u~(v) )

( -x.(A)/j (tH'(X)x )}~ X'+'(A)u.(A)

A

~wl

-"w6

j

k u.(A) )

k u.CA) )$

so that )Co(A)= Co(A)= 0 prove the validityof our assertion.

L E M M A 5. Suppose (X(A), U(A)) and ()[(A),0(A)) are norma!i~,ed conjdned

bases of (HA) for

A e R with Xo(A) -- 0o(A)=~o(A)= bo(A)= o. Let~ a'. A~meinvertible on some nontrivial open interva/2[. Put

that X~(A)

QkCA):=

('

Uk(A)

0kCA)

0)(0

Xk(A)

2k(A)

.),

'

A e2[.

Then (V2) implies that Q~(A) decreases on 2[. Moreover, (V1) and (V~) imply that Qk(A)decreases strictly on 2[ provided k>~s holds, where~, E J is the strict contro//ab///ty index of

(HR).PROOF. Let k E J*\{0} and A E 2[. We may apply Lemma 4 with the conjoined basis

(X'(A),U*CA))

x(~)

~(~)

and

U'(~)=

U(~)

0(~)

of the"big" system from Lemma 4 so that for d E R 2n

bohner~mr, edu Abstract--This paper introduces general discrete linear Harniltonian eigenvalue problems and characterizes the eigenvalues. Assumptions are given, among them the new notion of strict control-lability of a discrete system, that imply isolated

Hamiitonian Eigenvalue P r o b l e m s

189

"* JCk(~)a= J{ O;(:,)x;-' (:,) - u;(:,)x;-' (~)x~(:,)x~ * - '--

{x:'/~>¢{x~"~>~-.:~>x~>}x~-'~>~~=o× x; - ' (:,)d

=-~'x;,-'(~,)d:~./

/xa+~(:,) T\ u~(~)

>(!00 o)}-em(~)0

(A)} d

A~(~)

o o

o

o

\ u;~(~)]

X,,,+~(A)~=o× X;-'k-1 ra=O Um

U~(~)

um(~) )

\

um(~)

(A)dT~rn

holds provided we assume (V2) and use the solution (x, u) of (HA) defined by

u~

:=

\ um(~) v~(~)

-

x~(~)

1), R~(~,)

d.

Now we assume (V 0 and (V2), let k> ss, and suppose dV(~(A)d= 0. This yields/:/re(A)\(x'~+lum) It follows that

= O,

for all0 _< m _< k - 1.

x'),o

x'),l .....

.. J

0

holds. Strict controllability of (HR) on J* with strict controllability index~s E J now forces x= u= 0 on J* so that d= 0 and hence Qk(A)< 0 follows.| LEMMA 6. (V1) and (V2) imply (I). PROOF. For every A E R, we denote the special normalized conjoined bases of (HA) at 0 by (X(A), U(A)) and (X(A), 0(A)). Let Ao E R. We pick a conjoined basis (.~, 0) of (HAo) such that (X(Ao), U(A0)) and (X, 0) are normalized and such that )(N+I is invertible (observe Lemma 1). Let (X(A), 0(A)) be the conjoined basis of (HA) with Xo(A)= )(o and 0o(A) -= 0o, A e R. Due to continuity, XN+I(A) is invertible on some nontrivial open interval that contains Ao, and on this interval we have strict monotonicity of I (-0N+I(A) 0 0 U~+~(,x)) (-RN+~(,X)XN+I(A),

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新工程科技Printed in Great Britain PII S0898-1221(98)00210-7 0898-122198 19.00 + 0.00 Discrete Linea(5)全文阅读和word下载服务。

Printed in Great Britain PII S0898-1221(98)00210-7 0898-122198 19.00 + 0.00 Discrete Linea(5).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1212848.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top