第一范文网 - 专业文章范例文档资料分享平台

2013挑战中考数学压轴题第六版精选

来源:用户分享 时间:2022-05-06 本文由轻烟薄雾 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

目录

第一部分函数图象中点的存在性问题

1.1 因动点产生的相似三角形问题

例1 2012年苏州市中考第29题

例2 2012年黄冈市中考第25题

例3 2011年上海市闸北区中考模拟第25题

例4 2011年上海市杨浦区中考模拟第24题

例5 2010年义乌市中考第24题

例6 2010年上海市宝山区中考模拟第24题

例7 2009年临沂市中考第26题

例8 2009年上海市闸北区中考模拟第25题

1.2 因动点产生的等腰三角形问题

例1 2012年扬州市中考第27题

例2 2012年临沂市中考第26题

例3 2011年湖州市中考第24题

例4 2011年盐城市中考第28题

例5 2010年上海市闸北区中考模拟第25题

例6 2010年南通市中考第27题

例7 2009年重庆市中考第26题

1.3 因动点产生的直角三角形问题

例1 2012年广州市中考第24题

例2 2012年杭州市中考第22题

例3 2011年沈阳市中考第25题

例4 2011年浙江省中考第23题

例5 2010年北京市中考第24题

例6 2009年嘉兴市中考第24题

例7 2008年河南省中考第23题

1.4 因动点产生的平行四边形问题

例1 2012年福州市中考第21题

例2 2012年烟台市中考第26题

例3 2011年上海市中考第24题

例4 2011年江西省中考第24题

例5 2010年河南省中考第23题例6 2010年山西省中考第26题

例7 2009年福州市中考第21题

例8 2009年江西省中考第24题

1.5 因动点产生的梯形问题

例1 2012年上海市松江中考模拟第24题

例2 2012年衢州市中考第24题

例3 2011年北京市海淀区中考模拟第24题

例4 2011年义乌市中考第24题

例5 2010年杭州市中考第24题

例6 2010年上海市奉贤区中考模拟第24题

例7 2009年广州市中考第25题

1.6 因动点产生的面积问题

例1 2012年菏泽市中考第21题

例2 2012年河南省中考第23题

例3 2011年南通市中考第28题

例4 2011年上海市松江区中考模拟第24题

例5 2010年广州市中考第25题

例6 2010年扬州市中考第28题

例7 2009年兰州市中考第29题

1.7因动点产生的相切问题

例1 2012年河北省中考第25题

例2 2012年无锡市中考第28题

1.8因动点产生的线段和差问题

例1 2012年滨州市中考第24题

例2 2012年山西省中考第26题

第二部分图形运动中的函数关系问题

2.1 由比例线段产生的函数关系问题

例1 2012年上海市徐汇区中考模拟第25题

例2 2012年连云港市中考第26题

例3 2010年上海市中考第25题

2.2 由面积公式产生的函数关系问题

例1 2012年广东省中考第22题

例2 2012年河北省中考第26题

例3 2011年淮安市中考第28题 例4 2011年山西省中考第26题 例5 2011年重庆市中考第26题

第一部分 函数图象中点的存在性问题

1.1 因动点产生的相似三角形问题

例1 2012年苏州市中考第29题

如图1,已知抛物线211(1)444

b

y x b x =

-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .

(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);

(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;

(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.

图1

动感体验

请打开几何画板文件名“12苏州29”,拖动点B 在x 轴的正半轴上运动,可以体验到,点P 到两坐标轴的距离相等,存在四边形PCOB 的面积等于2b 的时刻.双击按钮“第(3)题”,拖动点B ,可以体验到,存在∠OQA =∠B 的时刻,也存在∠OQ ′A =∠B 的时刻.

思路点拨

1.第(2)题中,等腰直角三角形PBC 暗示了点P 到两坐标轴的距离相等.

2.联结OP ,把四边形PCOB 重新分割为两个等高的三角形,底边可以用含b 的式子表示. 3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q 最大的可能在经过点A 与x 轴垂直的直线上.

满分解答

(1)B 的坐标为(b , 0),点C 的坐标为(0,

4

b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC . 因此PD =PE .设点P 的坐标为(x, x). 如图3,联结OP .

所以S 四边形PCOB =S △PCO +S △PBO =115

2428

b x b x bx ??+??==2b .

解得165x =.所以点P 的坐标为(1616

,55

).

图2 图3

(3)由2111

(1)(1)()4444

b y x b x x x b =-++=--,得A (1, 0),OA =1.

①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA =,即2QA BA OA =?时,△BQA ∽△QOA . 所以2()14

b

b =-.解得843b =±.所以符合题意的点Q 为(1,23+).

②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。 因此△OCQ ∽△QOA . 当BA QA QA OA

=时,△BQA ∽△QOA .此时∠OQB =90°. 所以C 、Q 、B 三点共线.因此

BO QA

CO OA =

,即14

b QA b =.解得4QA =.此时Q (1,4).

图4 图5

考点伸展

第(3)题的思路是,A 、C 、O 三点是确定的,B 是x 轴正半轴上待定的点,而∠QOA 与∠QOC 是互余的,那么我们自然想到三个三角形都是直角三角形的情况.

这样,先根据△QOA 与△QOC 相似把点Q 的位置确定下来,再根据两直角边对应成比例确定点B 的位置.

如图中,圆与直线x =1的另一个交点会不会是符合题意的点Q 呢?

如果符合题意的话,那么点B 的位置距离点A 很近,这与OB =4OC 矛盾.

例2 2012年黄冈市中考模拟第25题

如图1,已知抛物线的方程C 1:1

(2)()y x x m m

=-

+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.

(1)若抛物线C 1过点M (2, 2),求实数m 的值; (2)在(1)的条件下,求△BCE 的面积;

(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标;

(4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.

图1

动感体验

请打开几何画板文件名“12黄冈25”,拖动点C 在x 轴正半轴上运动,观察左图,可以体验到,EC 与BF 保持平行,但是∠BFC 在无限远处也不等于45°.观察右图,可以体验到,∠CBF 保持45°,存在∠BFC =∠BCE 的时刻.

思路点拨

1.第(3)题是典型的“牛喝水”问题,当H 落在线段EC 上时,BH +EH 最小.

2.第(4)题的解题策略是:先分两种情况画直线BF ,作∠CBF =∠EBC =45°,或者作BF //EC .再用含m 的式子表示点F 的坐标.然后根据夹角相等,两边对应成比例列关于m 的方程.

满分解答

(1)将M (2, 2)代入1(2)()y x x m m =-+-,得1

24(2)m m =-?-.解得m =4.

(2)当m =4时,2111

(2)(4)2442

y x x x x =-+-=-++.所以C (4, 0),E (0, 2).

所以S △BCE =11

62622

BC OE ?=??=.

(3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小.

设对称轴与x 轴的交点为P ,那么HP EO

CP CO

=

. 因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2

(4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′.

由于∠BCE =∠FBC ,所以当CE BC

CB BF

=

,即2BC CE BF =?时,△BCE ∽△FBC . 设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1

(2)()

22x x m m x m

+-=+. 解得x =m +2.所以F ′(m +2, 0).

由'CO BF CE BF =,得24

4

m m BF m +=

+.所以2(4)4m m BF m ++=. 由2

BC CE BF =?,得22

2

(4)4

(2)4m m m m m

+++=+?.

整理,得0=16.此方程无解.

图2 图3 图4

②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′,

由于∠EBC =∠CBF ,所以

BE BC

BC BF

=

,即2BC BE BF =?时,△BCE ∽△BFC . 在Rt △BFF ′中,由FF ′=BF ′,得1

(2)()2x x m x m

+-=+.

解得x =2m .所以F ′(2,0)m .所以BF ′=2m +2,2(22)BF m =+. 由2BC BE BF =?,得2(2)222(22)m m +=?+.解得222m =±. 综合①、②,符合题意的m 为222+.

考点伸展

第(4)题也可以这样求BF 的长:在求得点F ′、F 的坐标后,根据两点间的距离公式求BF 的长.

例3 2011年上海市闸北区中考模拟第25题

直线

1

1

3

y x

=-+分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得

到△COD,抛物线y=ax2+bx+c经过A、C、D三点.

(1) 写出点A、B、C、D的坐标;

(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;

(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

图1

动感体验

请打开几何画板文件名“11闸北25”,拖动点Q在直线BG上运动,可以体验到,

△ABQ的两条直角边的比为1∶3共有四种情况,点B上、下各有两种.

思路点拨

1.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角.

2.用待定系数法求抛物线的解析式,用配方法求顶点坐标.

3.第(3)题判断∠ABQ=90°是解题的前提.

4.△ABQ与△COD相似,按照直角边的比分两种情况,每种情况又按照点Q与点B的位置关系分上下两种情形,点Q共有4个.

满分解答

(1)A(3,0),B(0,1),C(0,3),D(-1,0).

(2)因为抛物线y=ax2+bx+c经过A(3,0)、C(0,3)、D(-1,0) 三点,所以

930,

3,

0.

a b c

c

a b c

++=

?

?

=

?

?-+=

?

解得

1,

2,

3.

a

b

c

=-

?

?

=

?

?=

?

所以抛物线的解析式为y=-x2+2x+3=-(x-1)2+4,顶点G的坐标为(1,4).

(3)如图2,直线BG的解析式为y=3x+1,直线CD的解析式为y=3x+3,因此CD//BG.因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB⊥CD.因此AB⊥BG,即∠ABQ =90°.

因为点Q在直线BG上,设点Q的坐标为(x,3x+1),那么22

(3)10

BQ x x x

=+=±.Rt△COD的两条直角边的比为1∶3,如果Rt△ABQ与Rt△COD相似,存在两种情况:

①当3

BQ

BA

=时,

10

3

10

x

±

=.解得3

x=±.所以

1

(3,10)

Q,

2

(3,8)

Q--.

②当

1

3

BQ

BA

=时,

101

3

10

x

±

=.解得

1

3

x=±.所以

3

1

(,2)

3

Q,

4

1

(,0)

3

Q-.

图2 图3

考点伸展

第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB ⊥BG ;二是22(3)10BQ x x x =+=±.

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新医药卫生2013挑战中考数学压轴题第六版精选全文阅读和word下载服务。

2013挑战中考数学压轴题第六版精选.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1422282.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top