①③
11?1?1, ②?1(1?1), n(n?1)nn?1n(n?k)knn?k1k2?1k?12?12k?1(1?1k?1),
1k?1k?11?1(k?1)k1?1k12?1(k?1)k1?1k?1?1k,
④
n(n?1)(n?2)?2n(n?1)[?(n?1)(n?2)n?1),
] ,⑤
n(n?1)!?1n!?1(n?1)!,
⑥2(n?1?n)?1?2(n?nm?1mmmmm?1⑦an?Sn?Sn?1(n?2),⑧Cn?Cn?Cn?1?Cn?Cn?1?Cn.
特别声明:?运用等比数列求和公式,务必检查其公比与1的关系,必要时分类讨论. (6)通项转换法。
6.分期付款型应用问题
(1)重视将这类应用题与等差数列或等比数列相联系.
(2)若应用问题像“森林木材问题”那样,既增长又砍伐,则常选用“统一法”统一到“最后”解决.
(3)“分期付款”、“森林木材”等问题的解决过程中,务必“卡手指”,细心计算“年限”作为相应的“指数”. ?
四、三角函数
1.?终边与?终边相同(?的终边在?终边所在射线上)?????2k?(k?Z).
?终边与?终边共线(?的终边在?终边所在直线上)?. ?终边与?终边关于x轴对称??????2k?(k?Z). ?终边与?终边关于y轴对称???????2k?(k?Z). ?终边与?终边关于原点对称???????2k?(k?Z).
一般地:?终边与?终边关于角?的终边对称???2????2k?(k?Z).
sin?cos?22tan?22sin??cos?sin??cos?1220?22?????110110?1101220022?220??1?22101?122?1?2?10?????10?1?2?与?的终边关系由“两等分各象限、一二三四”确定.
222.弧长公式:l?|?|R,扇形面积公式:S?1lR?1|?|R,1弧度(1rad)?57.3?.
223.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.
注意:sin15??cos75????6?42,sin75??cos15????6?42,
5?1. 44.三角函数线的特征是:正弦线“站在x轴上(起点在x轴上)”、余弦线“躺在x轴上
tan15?cot75?2?3,tan75?cot15?2?3,sin18??(起点是原点)”、正切线“站在点A(1,0)处(起点是A)”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’?‘纵坐标’、‘余弦’?‘横坐标’、‘正切’?‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与sin??cos?值的大小变化的关系.?为锐角?sin????tan?.
5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;
6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.
7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”! 角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.
如??(???)???(???)??, 2??(???)?(???),2??(???)?(???)
????2????2,
???2?????2?????等.
?2?常值变换主要指“1”的变换:
22221?sinx?cosx?secx?tanx?tanx?cotx?tan??sin??cos0??等.
42三角式变换主要有:三角函数名互化(切割化弦)、三角函数次数的降升(降次、升次)、运算结构的转化(和式与积式的互化). 解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次.
注意:和(差)角的函数结构与符号特征;余弦倍角公式的三种形式选用;降次(升次)
sinxcosx’的内存联系”(常和三角换公式中的符号特征.“正余弦‘三兄妹—sinx?cosx、元法联系在一起t?sinx?cosx
?[?2,2],sinxcosx? ).
辅助角公式中辅助角的确定:asinx?bcosx?象限由a, b的符号确定,?角的值由tan??baa?bsin?x???(其中?角所在的
22确定)在求最值、化简时起着重要作用.尤其
是两者系数绝对值之比为1或3的情形.Asinx?Bcosx?C有实数解?A2?B2?C2.
8.三角函数性质、图像及其变换:
(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性
注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定. 如y?sin2x,y?sinx的周期都是?, 但
y?sinx?cosx2y?sinx?cosx的周期为?2, y=|tanx|的周期不变,问函数
y=cos|x|,y?sinx,y?sinx,y?cos(2)三角函数图像及其几何性质: ?sin(Asin(??)?)yy=Aωx+xφOx ,y=cos|x|是周期函数吗?
三角函数图象几何性质yx三角函数图象几何性质 y=ωxφyA?tan(Atan(?+x?)?)yOxx3x4邻中心轴相距x3x=x1T4x4x=x1x=x2x=x2邻中心|x3-x4|= T/2无穷对称中心:由y=0或y无意义确定邻中心|x3-x4|=T/2无穷对称中心:由y=0确定邻轴|x1-x2|=T/2无穷对称轴:由y=A或-A确定 (3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.
(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法. 9.三角形中的三角函数:
(1)内角和定理:三角形三角和为?,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形?三内角都是锐角?三内角的余弦值为正值?任两角和都是钝角?任意两边的平方和大于第三边的平方.
(2)正弦定理:
a?b?c?2R(R为三角形外接圆的半径).
sinAsinBsinC邻渐近线|x1-x2|=T无对称轴任意一条y轴的垂线与正切函数图象都相交,且相邻两交点的距离为一个周期!注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.
b?c?a(3)余弦定理:a?b?c?2bccosA,cosA?2bc222222(b?c)?a??1等,
2bc22常选用余弦定理鉴定三角形的类型.
(4)面积公式:S?1aha?1absinC?abc.
224R
10.反三角函数:
(1)反正弦arcsixn、反余弦arccosx、反正切arctaxn的取值范围分别是
[???2,2],[0,?],(???2,2).
(2)异面直线所成的角、直线与平面所成的角、二面角、向量的夹角的范围依次是
(0,?2],[0,?2],[0,?],[0,?].直线的倾斜角、l1到l2的角、l1与l2的夹角的范围依次是
[0,?),[0?,),(0,. ]2?五、向 量
1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.
????????AB,特别:2.几个概念:零向量、单位向量(与AB共线的单位向量是?????????AB(?????AB????????ACAB)?(?????????ACAB?????AC)、)????平行(共线)向量(无传递性,是因为有0)、相等向量(有AC|AB|??传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(a在b上的投影?????a?b是?acos?a,b????R).
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新高中教育-新人教[全套]高考数学总复习精品资料高中数学知识汇总(3)全文阅读和word下载服务。
相关推荐: