2019-2020年中考数学试卷分类汇编 作图题
1、(2013?曲靖)如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是( )
A. 射线OE是∠AOB的平分线 B. △COD是等腰三角形 C. C、D两点关于OE所在直线对称 D. O、E两点关于CD所在直线对称 考点: 作图—基本作图;全等三角形的判定与性质;角平分线的性质. 分析: 连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确; 根据作图得到OC=OD,判断B正确; 根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE是CD的垂直平分线,判断C正确; 根据作图不能得出CD平分OE,判断D错误. 解答: 解:A、连接CE、DE,根据作图得到OC=OD、CE=DE. ∵在△EOC与△EOD中, , ∴△EOC≌△EOD(SSS), ∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意; B、根据作图得到OC=OD, ∴△COD是等腰三角形,正确,不符合题意; C、根据作图得到OC=OD, 又∵射线OE平分∠AOB, ∴OE是CD的垂直平分线, ∴C、D两点关于OE所在直线对称,正确,不符合题意; D、根据作图不能得出CD平分OE, ∴CD不是OE的平分线, ∴O、E两点关于CD所在直线不对称,错误,符合题意. 故选D. 点评: 本题考查了作图﹣基本作图,全等三角形的判定与性质,角平分线的性质,等腰三角形、轴对称的性质,从作图语句中提取正确信息是解题的关键. 2、(2013?遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )
①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.
A. 1 B. 2 C. 3 D. 4 考点: 角平分线的性质;线段垂直平分线的性质;作图—基本作图. 分析: ①根据作图的过程可以判定AD是∠BAC的角平分线; ②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数; ③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上; ④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比. 解答: 解:①根据作图的过程可知,AD是∠BAC的平分线. 故①正确; ②如图,∵在△ABC中,∠C=90°,∠B=30°, ∴∠CAB=60°. 又∵AD是∠BAC的平分线, ∴∠1=∠2=∠CAB=30°, ∴∠3=90°﹣∠2=60°,即∠ADC=60°. 故②正确; ③∵∠1=∠B=30°, ∴AD=BD, ∴点D在AB的中垂线上. 故③正确; ④∵如图,在直角△ACD中,∠2=30°, ∴CD=AD, ∴BC=CD+BD=AD+AD=AD,S△DAC=AC?CD=AC?AD. ∴S△ABC=AC?BC=AC?AD=AC?AD, ∴S△DAC:S△ABC=AC?AD: AC?AD=1:3. 故④正确. 综上所述,正确的结论是:①②③④,共有4个. 故选D. 点评: 本题考查了角平分线的性质、线段垂直平分线的性质以及作图﹣基本作图.解题时,需要熟悉等腰三角形的判定与性质. 3、(2013?昆明)在平面直角坐标系中,四边形ABCD的位置如图所示,解答下列问题: (1)将四边形ABCD先向左平移4个单位,再向下平移6个单位,得到四边形A1B1C1D1,画出平移后的四边形A1B1C1D1;
(2)将四边形A1B1C1D1绕点A1逆时针旋转90°,得到四边形A1B2C2D2,画出旋转后的四边形A1B2C2D2,并写出点C2的坐标.
考点: 作图-旋转变换;作图-平移变换. 专题: 作图题. 分析: (1)根据网格结构找出点A、B、C、D平移后的对应点A1、B1、C1、D1的位置,然后顺次连接即可; (2)根据网格结构找出B1、C1、D1绕点A1逆时针旋转90°的对应点B2、C2、D2的位置,然后顺次连接即可,再根据平面直角坐标系写出点C2的坐标. 解答: 解:(1)四边形A1B1C1D1如图所示; (2)四边形A1B2C2D2如图所示, C2(1,﹣2). 点评: 本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键. 4、(2013?天津)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.
(Ⅰ)△ABC的面积等于 6 ;
(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明) 取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求 .
考点: 作图—相似变换;三角形的面积;正方形的性质.3718684 专题: 计算题. 分析: (Ⅰ)△ABC以AB为底,高为3个单位,求出面积即可; (Ⅱ)作出所求的正方形,如图所示,画图方法为:取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求 解答: 解:(Ⅰ)△ABC的面积为:×4×3=6; (Ⅱ)如图,取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线, 与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F, 则四边形DEFG即为所求.
相关推荐: