We demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. This arbitrariness is connected to the existence of a transformation, which reduces eff
¯n,s+k,z′(x,y)=Ψ Γ(s+k+1) d2z
Γ(k+s+1)
k!¯n,s+k,z(x,y).Ψ(2.59)
Thatmeans,inparticular,that(2.56)isacompletesetsincetheset(2.31)iscomplete.Selectingdi erentformsforthefunctionΦ(η),wecangetothersetsofstationarystatesforachargeinauniformmagnetic eld.
C.Nonstationarystates
Themostinterestingnonstationarysolutionsofrelativisticwaveequationsforachargeinauniformmagnetic eldarecoherentstates;forthe rsttimesuchsolutionswerepresentedin[10–13],seealso[3].Belowwepresentanewfamilyofnonstationarysolutions,whichincludestheabovecoherentstatesasaparticularcase.
Herewearegoingtouselight-conevariablesu0=x0 x3,u3=x0+x3,andthecorrespondingmomentumoperators
1 =ih P¯ =002(P0+P3),(2.60)
0= / u0,where
form 3= / u3.ThentheKlein-Gordonoperatorcanbepresentedinthe
2 P ,K=4¯h 2P30 2γN m
2(2.61)whereastheDiracequationreads(ΨisaDiracbispinor)4¯h 2
P⊥= (P1,P2,0), P P30Ψ( )=2γND+m Ψ=Ψ(+)+Ψ( ), Ψ( ), Ψ2P¯ρ3m]Ψ( ),3(+)=[(αP⊥)+hΨ(±)=p±Ψ,2p±=1±α3.(2.62)Hereαandρ3areDiracmatrices[3],andp±projectionoperators. ,P areInthecaseoftheuniformmagnetic eldunderconsideration,theoperatorsP30 integralsofmotion.Thus,wewillconsidersolutionsthatareeigenvectorsofP3,
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新人文社科New solutions of relativistic wave equations in magnetic fields and longitudinal fields(13)全文阅读和word下载服务。
相关推荐: