第一范文网 - 专业文章范例文档资料分享平台

立体几何中的排列组合问题解法举隅(4)

来源:用户分享 时间:2021-06-02 本文由寒春玉柳 分享 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

4

解 正五棱柱共有10个顶点,若每四个顶点构成一个四面体,共可构成C10=210

个四面体,其中四点在同一平面内的有三类:

4① 每一底面的5点中选4点的组合方法有2C5个.

② 5条侧棱中的任意两条棱上的四点有C52个.

③一个底面的一边与另一个底面相应的一条对角线平行(例如AB∥E1C1),这样

1共面的四点共有2C5个.

4421

故四面体的个数为C10=180个,故选D. 2C5 C5 2C5

例10 用正五棱柱的10个顶点中的5个顶点作四棱锥的5个顶点,共可得多少个四棱锥?

解 结合图3,以不同类型的四棱锥的底面分类可得:

1① 以棱柱的底面为四棱锥底面的共有2C54C5个. 11②以棱柱的侧面为四棱锥底面的共有C5个. C611③以棱柱的对角面为四棱锥底面的共有C5个. C6

11④以图3中ABC1E1(为等腰梯形)为四棱锥底面的共有2C5个. C61111111故可构成的四棱锥共有2C54C5+C5+C5+2C5=170个. C6C6C6

例11 以四棱柱的顶点为顶点的三棱锥有多少个?

解 本题要讨论底面的形状,所求的答案与底面的形状有关. ①若底面不是梯形,也不是平行四边形,则有C84-6-2=62个. ② 若底面是梯形,则有C84-6-4=60个. ③ 若底面是平行四边形,则有C84-6-6=58个. 综上所述,所求三棱锥的个数为62或60或58.

搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新人文社科立体几何中的排列组合问题解法举隅(4)全文阅读和word下载服务。

立体几何中的排列组合问题解法举隅(4).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/wenku/1198640.html(转载请注明文章来源)
热门推荐
Copyright © 2018-2022 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top